Matthew J. Fogarty, Debanjali Dasgupta, Obaid U. Khurram, Gary C. Sieck
{"title":"TrkB信号的化学发生抑制降低膈运动神经元的存活和大小","authors":"Matthew J. Fogarty, Debanjali Dasgupta, Obaid U. Khurram, Gary C. Sieck","doi":"10.1016/j.mcn.2023.103847","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Brain derived neurotrophic factor (BDNF) signalling through its high-affinity </span>tropomyosin receptor kinase B (TrkB) is known to have potent effects on </span>motor neuron<span> survival and morphology during development and in neurodegenerative diseases. Here, we employed a novel 1NMPP1 sensitive </span></span><em>TrkB</em><sup><em>F616</em></sup> rat model to evaluate the effect of 14 days inhibition of TrkB signalling on phrenic motor neurons (PhMNs). Adult female and male <em>TrkB</em><sup><em>F616</em></sup><span> rats were divided into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin<span> B (CTB). After 11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal cord was excised 100 μm thick spinal sections containing PhMNs were imaged using two-channel confocal microscopy. TrkB inhibition reduced the total number of PhMNs by ∼16 %, reduced the mean PhMN somal surface areas by ∼25 %, impaired CTB uptake 2.5-fold and reduced the estimated PhMN dendritic surface area by ∼38 %. We conclude that inhibition of TrkB signalling alone in adult </span></span><em>TrkB</em><sup><em>F616</em></sup> rats is sufficient to lead to PhMN loss, morphological degeneration and deficits in retrograde axonal uptake/transport.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"125 ","pages":"Article 103847"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247511/pdf/","citationCount":"2","resultStr":"{\"title\":\"Chemogenetic inhibition of TrkB signalling reduces phrenic motor neuron survival and size\",\"authors\":\"Matthew J. Fogarty, Debanjali Dasgupta, Obaid U. Khurram, Gary C. Sieck\",\"doi\":\"10.1016/j.mcn.2023.103847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Brain derived neurotrophic factor (BDNF) signalling through its high-affinity </span>tropomyosin receptor kinase B (TrkB) is known to have potent effects on </span>motor neuron<span> survival and morphology during development and in neurodegenerative diseases. Here, we employed a novel 1NMPP1 sensitive </span></span><em>TrkB</em><sup><em>F616</em></sup> rat model to evaluate the effect of 14 days inhibition of TrkB signalling on phrenic motor neurons (PhMNs). Adult female and male <em>TrkB</em><sup><em>F616</em></sup><span> rats were divided into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin<span> B (CTB). After 11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal cord was excised 100 μm thick spinal sections containing PhMNs were imaged using two-channel confocal microscopy. TrkB inhibition reduced the total number of PhMNs by ∼16 %, reduced the mean PhMN somal surface areas by ∼25 %, impaired CTB uptake 2.5-fold and reduced the estimated PhMN dendritic surface area by ∼38 %. We conclude that inhibition of TrkB signalling alone in adult </span></span><em>TrkB</em><sup><em>F616</em></sup> rats is sufficient to lead to PhMN loss, morphological degeneration and deficits in retrograde axonal uptake/transport.</p></div>\",\"PeriodicalId\":18739,\"journal\":{\"name\":\"Molecular and Cellular Neuroscience\",\"volume\":\"125 \",\"pages\":\"Article 103847\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247511/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044743123000416\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044743123000416","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Chemogenetic inhibition of TrkB signalling reduces phrenic motor neuron survival and size
Brain derived neurotrophic factor (BDNF) signalling through its high-affinity tropomyosin receptor kinase B (TrkB) is known to have potent effects on motor neuron survival and morphology during development and in neurodegenerative diseases. Here, we employed a novel 1NMPP1 sensitive TrkBF616 rat model to evaluate the effect of 14 days inhibition of TrkB signalling on phrenic motor neurons (PhMNs). Adult female and male TrkBF616 rats were divided into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin B (CTB). After 11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal cord was excised 100 μm thick spinal sections containing PhMNs were imaged using two-channel confocal microscopy. TrkB inhibition reduced the total number of PhMNs by ∼16 %, reduced the mean PhMN somal surface areas by ∼25 %, impaired CTB uptake 2.5-fold and reduced the estimated PhMN dendritic surface area by ∼38 %. We conclude that inhibition of TrkB signalling alone in adult TrkBF616 rats is sufficient to lead to PhMN loss, morphological degeneration and deficits in retrograde axonal uptake/transport.
期刊介绍:
Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.