{"title":"改善早期胃癌内镜诊断的电子学习系统。","authors":"Kenshi Yao, Takashi Yao, Noriya Uedo, Hisashi Doyama, Hideki Ishikawa, Satoshi Nimura, Yuichi Takahashi","doi":"10.5946/ce.2023.087","DOIUrl":null,"url":null,"abstract":"<p><p>We developed three e-learning systems for endoscopists to acquire the necessary skills to improve the diagnosis of early gastric cancer (EGC) and demonstrated their usefulness using randomized controlled trials. The subjects of the three e-learning systems were \"detec-tion\", \"characterization\", and \"preoperative assessment\". The contents of each e-learning system included \"technique\", \"knowledge\", and \"obtaining experience\". All e-learning systems proved useful for endoscopists to learn how to diagnose EGC. Lecture videos describing \"the technique\" and \"the knowledge\" can be beneficial. In addition, repeating 100 self-study cases allows learners to gain \"experience\" and improve their diagnostic skills further. Web-based e-learning systems have more advantages than other teaching methods because the number of participants is unlimited. Histopathological diagnosis is the gold standard for the diagnosis of gastric cancer. Therefore, we developed a comprehensive diagnostic algorithm to standardize the histopathological diagnosis of gastric cancer. Once we have successfully shown that this algorithm is helpful for the accurate histopathological diagnosis of cancer, we will complete a series of e-learning systems designed to assess EGC accurately.</p>","PeriodicalId":10351,"journal":{"name":"Clinical Endoscopy","volume":" ","pages":"283-292"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133997/pdf/","citationCount":"0","resultStr":"{\"title\":\"E-learning system to improve the endoscopic diagnosis of early gastric cancer.\",\"authors\":\"Kenshi Yao, Takashi Yao, Noriya Uedo, Hisashi Doyama, Hideki Ishikawa, Satoshi Nimura, Yuichi Takahashi\",\"doi\":\"10.5946/ce.2023.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed three e-learning systems for endoscopists to acquire the necessary skills to improve the diagnosis of early gastric cancer (EGC) and demonstrated their usefulness using randomized controlled trials. The subjects of the three e-learning systems were \\\"detec-tion\\\", \\\"characterization\\\", and \\\"preoperative assessment\\\". The contents of each e-learning system included \\\"technique\\\", \\\"knowledge\\\", and \\\"obtaining experience\\\". All e-learning systems proved useful for endoscopists to learn how to diagnose EGC. Lecture videos describing \\\"the technique\\\" and \\\"the knowledge\\\" can be beneficial. In addition, repeating 100 self-study cases allows learners to gain \\\"experience\\\" and improve their diagnostic skills further. Web-based e-learning systems have more advantages than other teaching methods because the number of participants is unlimited. Histopathological diagnosis is the gold standard for the diagnosis of gastric cancer. Therefore, we developed a comprehensive diagnostic algorithm to standardize the histopathological diagnosis of gastric cancer. Once we have successfully shown that this algorithm is helpful for the accurate histopathological diagnosis of cancer, we will complete a series of e-learning systems designed to assess EGC accurately.</p>\",\"PeriodicalId\":10351,\"journal\":{\"name\":\"Clinical Endoscopy\",\"volume\":\" \",\"pages\":\"283-292\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133997/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Endoscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5946/ce.2023.087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Endoscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5946/ce.2023.087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
E-learning system to improve the endoscopic diagnosis of early gastric cancer.
We developed three e-learning systems for endoscopists to acquire the necessary skills to improve the diagnosis of early gastric cancer (EGC) and demonstrated their usefulness using randomized controlled trials. The subjects of the three e-learning systems were "detec-tion", "characterization", and "preoperative assessment". The contents of each e-learning system included "technique", "knowledge", and "obtaining experience". All e-learning systems proved useful for endoscopists to learn how to diagnose EGC. Lecture videos describing "the technique" and "the knowledge" can be beneficial. In addition, repeating 100 self-study cases allows learners to gain "experience" and improve their diagnostic skills further. Web-based e-learning systems have more advantages than other teaching methods because the number of participants is unlimited. Histopathological diagnosis is the gold standard for the diagnosis of gastric cancer. Therefore, we developed a comprehensive diagnostic algorithm to standardize the histopathological diagnosis of gastric cancer. Once we have successfully shown that this algorithm is helpful for the accurate histopathological diagnosis of cancer, we will complete a series of e-learning systems designed to assess EGC accurately.