Yi Liu, Liuxing He, Lijia Cheng, Xinsong Li, Min Gao, Qinzhi Li, Jingjing Gao, Murugan Ramalingam
{"title":"提高植骨效果:抗菌人工复合骨支架的综合综述。","authors":"Yi Liu, Liuxing He, Lijia Cheng, Xinsong Li, Min Gao, Qinzhi Li, Jingjing Gao, Murugan Ramalingam","doi":"10.12659/MSM.939972","DOIUrl":null,"url":null,"abstract":"<p><p>Bone defects and dysfunctions are prevalent among patients, resulting from various causes such as trauma, tumors, congenital malformations, inflammation, and infection. The demand for bone defect repair materials is second only to blood transfusions. Artificial bone composites offer numerous advantages for bone damage repair, including their availability, absence of rejection or immune reactions, high malleability, exceptional mechanical strength, and outstanding biocompatibility. However, bacterial infections frequently occur during bone transplantation or on graft material structures, leading to severe complications such as osteomyelitis and osteoporosis. Moreover, existing osteogenic materials alone are inadequate to address the challenges posed by traumatic infections, presenting a significant hurdle for clinicians in reconstructing infectious bone defects. Consequently, it is crucial to functionalize artificial bone composites to facilitate effective bone repair and regeneration. Notably, antibacterial capabilities play a critical role in preventing and treating infectious bone defects, and current research is focusing on the interface between artificial bone composites and antibacterial treatments. This article provides an extensive review of the current state of artificial composite bone scaffolds with antibacterial properties for infection prevention in bone grafting.</p>","PeriodicalId":18276,"journal":{"name":"Medical Science Monitor : International Medical Journal of Experimental and Clinical Research","volume":"29 ","pages":"e939972"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/b6/medscimonit-29-e939972.PMC10399463.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing Bone Grafting Outcomes: A Comprehensive Review of Antibacterial Artificial Composite Bone Scaffolds.\",\"authors\":\"Yi Liu, Liuxing He, Lijia Cheng, Xinsong Li, Min Gao, Qinzhi Li, Jingjing Gao, Murugan Ramalingam\",\"doi\":\"10.12659/MSM.939972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone defects and dysfunctions are prevalent among patients, resulting from various causes such as trauma, tumors, congenital malformations, inflammation, and infection. The demand for bone defect repair materials is second only to blood transfusions. Artificial bone composites offer numerous advantages for bone damage repair, including their availability, absence of rejection or immune reactions, high malleability, exceptional mechanical strength, and outstanding biocompatibility. However, bacterial infections frequently occur during bone transplantation or on graft material structures, leading to severe complications such as osteomyelitis and osteoporosis. Moreover, existing osteogenic materials alone are inadequate to address the challenges posed by traumatic infections, presenting a significant hurdle for clinicians in reconstructing infectious bone defects. Consequently, it is crucial to functionalize artificial bone composites to facilitate effective bone repair and regeneration. Notably, antibacterial capabilities play a critical role in preventing and treating infectious bone defects, and current research is focusing on the interface between artificial bone composites and antibacterial treatments. This article provides an extensive review of the current state of artificial composite bone scaffolds with antibacterial properties for infection prevention in bone grafting.</p>\",\"PeriodicalId\":18276,\"journal\":{\"name\":\"Medical Science Monitor : International Medical Journal of Experimental and Clinical Research\",\"volume\":\"29 \",\"pages\":\"e939972\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/b6/medscimonit-29-e939972.PMC10399463.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Science Monitor : International Medical Journal of Experimental and Clinical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12659/MSM.939972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Science Monitor : International Medical Journal of Experimental and Clinical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12659/MSM.939972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Bone Grafting Outcomes: A Comprehensive Review of Antibacterial Artificial Composite Bone Scaffolds.
Bone defects and dysfunctions are prevalent among patients, resulting from various causes such as trauma, tumors, congenital malformations, inflammation, and infection. The demand for bone defect repair materials is second only to blood transfusions. Artificial bone composites offer numerous advantages for bone damage repair, including their availability, absence of rejection or immune reactions, high malleability, exceptional mechanical strength, and outstanding biocompatibility. However, bacterial infections frequently occur during bone transplantation or on graft material structures, leading to severe complications such as osteomyelitis and osteoporosis. Moreover, existing osteogenic materials alone are inadequate to address the challenges posed by traumatic infections, presenting a significant hurdle for clinicians in reconstructing infectious bone defects. Consequently, it is crucial to functionalize artificial bone composites to facilitate effective bone repair and regeneration. Notably, antibacterial capabilities play a critical role in preventing and treating infectious bone defects, and current research is focusing on the interface between artificial bone composites and antibacterial treatments. This article provides an extensive review of the current state of artificial composite bone scaffolds with antibacterial properties for infection prevention in bone grafting.