Brain Renin-Angiotensin System: From Physiology to Pathology in Neuronal Complications Induced by SARS-CoV-2.

IF 2.6 4区 医学 Q3 CELL BIOLOGY Analytical Cellular Pathology Pub Date : 2023-01-01 DOI:10.1155/2023/8883492
Shamseddin Ahmadi, Shiler Khaledi
{"title":"Brain Renin-Angiotensin System: From Physiology to Pathology in Neuronal Complications Induced by SARS-CoV-2.","authors":"Shamseddin Ahmadi,&nbsp;Shiler Khaledi","doi":"10.1155/2023/8883492","DOIUrl":null,"url":null,"abstract":"<p><p>Angiotensin-converting enzyme 2 (ACE2), a key enzyme in the renin-angiotensin system (RAS), is expressed in various tissues and organs, including the central nervous system (CNS). The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease-2019 (COVID-19), binds to ACE2, which raises concerns about the potential for viral infection in the CNS. There are numerous reports suggesting a link between SARS-CoV-2 infection and neurological manifestations. This study aimed to present an updated review of the role of brain RAS components, especially ACE2, in neurological complications induced by SARS-CoV-2 infection. Several routes of SARS-CoV-2 entry into the brain have been proposed. Because an anosmia condition appeared broadly in COVID-19 patients, the olfactory nerve route was suggested as an early pathway for SARS-CoV-2 entry into the brain. In addition, a hematogenous route via disintegrations in the blood-brain barrier following an increase in systemic cytokine and chemokine levels and retrograde axonal transport, especially via the vagus nerve innervating lungs, have been described. Common nonspecific neurological symptoms in COVID-19 patients are myalgia, headache, anosmia, and dysgeusia. However, more severe outcomes include cerebrovascular diseases, cognitive impairment, anxiety, encephalopathy, and stroke. Alterations in brain RAS components such as angiotensin II (Ang II) and ACE2 mediate neurological manifestations of SARS-CoV-2 infection, at least in part. Downregulation of ACE2 due to SARS-CoV-2 infection, followed by an increase in Ang II levels, leads to hyperinflammation and oxidative stress, which in turn accelerates neurodegeneration in the brain. Furthermore, ACE2 downregulation in the hypothalamus induces stress and anxiety responses by increasing corticotropin-releasing hormone. SARS-CoV-2 infection may also dysregulate the CNS neurotransmission, leading to neurological complications observed in severe cases of COVID-19. It can be concluded that the neurological manifestations of COVID-19 may be partially associated with changes in brain RAS components.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421715/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/8883492","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Angiotensin-converting enzyme 2 (ACE2), a key enzyme in the renin-angiotensin system (RAS), is expressed in various tissues and organs, including the central nervous system (CNS). The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease-2019 (COVID-19), binds to ACE2, which raises concerns about the potential for viral infection in the CNS. There are numerous reports suggesting a link between SARS-CoV-2 infection and neurological manifestations. This study aimed to present an updated review of the role of brain RAS components, especially ACE2, in neurological complications induced by SARS-CoV-2 infection. Several routes of SARS-CoV-2 entry into the brain have been proposed. Because an anosmia condition appeared broadly in COVID-19 patients, the olfactory nerve route was suggested as an early pathway for SARS-CoV-2 entry into the brain. In addition, a hematogenous route via disintegrations in the blood-brain barrier following an increase in systemic cytokine and chemokine levels and retrograde axonal transport, especially via the vagus nerve innervating lungs, have been described. Common nonspecific neurological symptoms in COVID-19 patients are myalgia, headache, anosmia, and dysgeusia. However, more severe outcomes include cerebrovascular diseases, cognitive impairment, anxiety, encephalopathy, and stroke. Alterations in brain RAS components such as angiotensin II (Ang II) and ACE2 mediate neurological manifestations of SARS-CoV-2 infection, at least in part. Downregulation of ACE2 due to SARS-CoV-2 infection, followed by an increase in Ang II levels, leads to hyperinflammation and oxidative stress, which in turn accelerates neurodegeneration in the brain. Furthermore, ACE2 downregulation in the hypothalamus induces stress and anxiety responses by increasing corticotropin-releasing hormone. SARS-CoV-2 infection may also dysregulate the CNS neurotransmission, leading to neurological complications observed in severe cases of COVID-19. It can be concluded that the neurological manifestations of COVID-19 may be partially associated with changes in brain RAS components.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑肾素-血管紧张素系统:从生理到病理在SARS-CoV-2诱导的神经并发症中的作用
血管紧张素转换酶2 (Angiotensin-converting enzyme, ACE2)是肾素-血管紧张素系统(renin-angiotensin system, RAS)中的关键酶,在包括中枢神经系统(central nervous system, CNS)在内的多种组织器官中表达。导致2019冠状病毒病(COVID-19)的病毒——严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)的刺突蛋白与ACE2结合,这引起了人们对中枢神经系统病毒感染可能性的担忧。有许多报告表明,SARS-CoV-2感染与神经系统症状之间存在联系。本研究旨在对脑RAS成分,特别是ACE2在SARS-CoV-2感染引起的神经系统并发症中的作用进行最新综述。已经提出了几种SARS-CoV-2进入大脑的途径。由于嗅觉缺失在COVID-19患者中广泛出现,因此嗅觉神经途径被认为是SARS-CoV-2进入大脑的早期途径。此外,在全身细胞因子和趋化因子水平增加以及轴突逆行运输(特别是通过支配肺的迷走神经)后,经血脑屏障解体的血液途径也已被描述。COVID-19患者常见的非特异性神经系统症状为肌痛、头痛、嗅觉缺失和语言障碍。然而,更严重的后果包括脑血管疾病、认知障碍、焦虑、脑病和中风。脑RAS成分如血管紧张素II (Ang II)和ACE2的改变至少部分介导了SARS-CoV-2感染的神经学表现。由于SARS-CoV-2感染导致ACE2下调,随后Ang II水平升高,导致过度炎症和氧化应激,从而加速大脑的神经变性。此外,下丘脑ACE2下调通过增加促肾上腺皮质激素释放激素诱导应激和焦虑反应。SARS-CoV-2感染还可能失调中枢神经系统神经传递,导致在COVID-19重症病例中观察到的神经系统并发症。因此,新冠肺炎的神经系统表现可能与脑RAS成分的变化有部分关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Cellular Pathology
Analytical Cellular Pathology ONCOLOGY-CELL BIOLOGY
CiteScore
4.90
自引率
3.10%
发文量
70
审稿时长
16 weeks
期刊介绍: Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.
期刊最新文献
LncRNA H19 Promotes Gastric Cancer Metastasis via miR-148-3p/SOX-12 Axis. Shock Wave Therapy Alleviates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Inhibiting Both Apoptosis and Ferroptosis. Role of miR-93-5p and Its Opposing Effect of Ionizing Radiation in Non-Small Cell Lung Cancer. Immunohistochemical Profile of p62/SQSTM1/Sequestosome-1 in Human Low- and High-Grade Intracranial Meningiomas. Construction and Identification of Eukaryotic Expression Vector pEGFP-N1-MIC-1 for Mouse MIC-1 Gene and Its Effect on Gastric Cancer Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1