Information theoretic measures of causal influences during transient neural events.

Frontiers in network physiology Pub Date : 2023-05-31 eCollection Date: 2023-01-01 DOI:10.3389/fnetp.2023.1085347
Kaidi Shao, Nikos K Logothetis, Michel Besserve
{"title":"Information theoretic measures of causal influences during transient neural events.","authors":"Kaidi Shao, Nikos K Logothetis, Michel Besserve","doi":"10.3389/fnetp.2023.1085347","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Transient phenomena play a key role in coordinating brain activity at multiple scales, however their underlying mechanisms remain largely unknown. A key challenge for neural data science is thus to characterize the network interactions at play during these events. <b>Methods:</b> Using the formalism of Structural Causal Models and their graphical representation, we investigate the theoretical and empirical properties of Information Theory based causal strength measures in the context of recurring spontaneous transient events. <b>Results:</b> After showing the limitations of Transfer Entropy and Dynamic Causal Strength in this setting, we introduce a novel measure, relative Dynamic Causal Strength, and provide theoretical and empirical support for its benefits. <b>Discussion:</b> These methods are applied to simulated and experimentally recorded neural time series and provide results in agreement with our current understanding of the underlying brain circuits.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.1085347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Transient phenomena play a key role in coordinating brain activity at multiple scales, however their underlying mechanisms remain largely unknown. A key challenge for neural data science is thus to characterize the network interactions at play during these events. Methods: Using the formalism of Structural Causal Models and their graphical representation, we investigate the theoretical and empirical properties of Information Theory based causal strength measures in the context of recurring spontaneous transient events. Results: After showing the limitations of Transfer Entropy and Dynamic Causal Strength in this setting, we introduce a novel measure, relative Dynamic Causal Strength, and provide theoretical and empirical support for its benefits. Discussion: These methods are applied to simulated and experimentally recorded neural time series and provide results in agreement with our current understanding of the underlying brain circuits.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瞬时神经事件中因果影响的信息论测量。
简介瞬态现象在多尺度协调大脑活动方面发挥着关键作用,但其潜在机制在很大程度上仍不为人所知。因此,神经数据科学面临的一个关键挑战是如何描述这些事件中的网络交互作用。研究方法利用结构因果模型的形式主义及其图形表示法,我们研究了基于信息论的因果强度测量在反复发生的自发瞬时事件中的理论和经验特性。结果:在展示了转移熵和动态因果强度在这种情况下的局限性后,我们引入了一种新的测量方法--相对动态因果强度,并为其优点提供了理论和经验支持。讨论:这些方法适用于模拟和实验记录的神经时间序列,得出的结果与我们目前对潜在大脑回路的理解一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
A statistical analysis method for probability distributions in Erdös-Rényi random networks with preferential cutting-rewiring operation. On preserving anatomical detail in statistical shape analysis for clustering: focus on left atrial appendage morphology. Exploring the origins of switching dynamics in a multifunctional reservoir computer. Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue. Connectivity of high-frequency bursts as SOZ localization biomarker.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1