Brain Structural Covariance Network in Asperger Syndrome Differs From Those in Autism Spectrum Disorder and Healthy Controls.

IF 1 Q4 NEUROSCIENCES Basic and Clinical Neuroscience Pub Date : 2022-11-01 DOI:10.32598/bcn.2021.2262.1
Farnaz Faridi, Afrooz Seyedebrahimi, Reza Khosrowabadi
{"title":"Brain Structural Covariance Network in Asperger Syndrome Differs From Those in Autism Spectrum Disorder and Healthy Controls.","authors":"Farnaz Faridi,&nbsp;Afrooz Seyedebrahimi,&nbsp;Reza Khosrowabadi","doi":"10.32598/bcn.2021.2262.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Autism is a heterogeneous neurodevelopmental disorder associated with social, cognitive and behavioral impairments. These impairments are often reported along with alteration of the brain structure such as abnormal changes in the grey matter (GM) density. However, it is not yet clear whether these changes could be used to differentiate various subtypes of autism spectrum disorder (ASD).</p><p><strong>Method: </strong>We compared the regional changes of GM density in ASD, Asperger's Syndrome (AS) individuals and a group of healthy controls (HC). In addition to regional changes itself, the amount of GM density changes in one region as compared to other brain regions was also calculated. We hypothesized that this structural covariance network could differentiate the AS individuals from the ASD and HC groups. Therefore, statistical analysis was performed on the MRI data of 70 male subjects including 26 ASD (age=14-50, IQ=92-132), 16 AS (age=7-58, IQ=93-133) and 28 HC (age=9-39, IQ=95-144).</p><p><strong>Result: </strong>The one-way ANOVA on the GM density of 116 anatomically separated regions showed significant differences among the groups. The pattern of structural covariance network indicated that covariation of GM density between the brain regions is altered in ASD.</p><p><strong>Conclusion: </strong>This changed structural covariance could be considered as a reason for less efficient segregation and integration of information in the brain that could lead to cognitive dysfunctions in autism. We hope these findings could improve our understanding about the pathobiology of autism and may pave the way towards a more effective intervention paradigm.</p>","PeriodicalId":8701,"journal":{"name":"Basic and Clinical Neuroscience","volume":"13 6","pages":"815-838"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/27/8d/BCN-13-815.PMC10262285.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Clinical Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/bcn.2021.2262.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Autism is a heterogeneous neurodevelopmental disorder associated with social, cognitive and behavioral impairments. These impairments are often reported along with alteration of the brain structure such as abnormal changes in the grey matter (GM) density. However, it is not yet clear whether these changes could be used to differentiate various subtypes of autism spectrum disorder (ASD).

Method: We compared the regional changes of GM density in ASD, Asperger's Syndrome (AS) individuals and a group of healthy controls (HC). In addition to regional changes itself, the amount of GM density changes in one region as compared to other brain regions was also calculated. We hypothesized that this structural covariance network could differentiate the AS individuals from the ASD and HC groups. Therefore, statistical analysis was performed on the MRI data of 70 male subjects including 26 ASD (age=14-50, IQ=92-132), 16 AS (age=7-58, IQ=93-133) and 28 HC (age=9-39, IQ=95-144).

Result: The one-way ANOVA on the GM density of 116 anatomically separated regions showed significant differences among the groups. The pattern of structural covariance network indicated that covariation of GM density between the brain regions is altered in ASD.

Conclusion: This changed structural covariance could be considered as a reason for less efficient segregation and integration of information in the brain that could lead to cognitive dysfunctions in autism. We hope these findings could improve our understanding about the pathobiology of autism and may pave the way towards a more effective intervention paradigm.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿斯伯格综合征的大脑结构协方差网络与自闭症谱系障碍和健康对照组的大脑结构方差网络不同。
引言:自闭症是一种异质性的神经发育障碍,与社交、认知和行为障碍有关。这些损伤通常伴随着大脑结构的改变,如灰质(GM)密度的异常变化。然而,目前尚不清楚这些变化是否可以用于区分自闭症谱系障碍(ASD)的各种亚型。方法:我们比较了ASD、阿斯伯格综合症(AS)个体和一组健康对照(HC)的GM密度的区域变化。除了区域变化本身,还计算了一个区域与其他大脑区域相比的GM密度变化量。我们假设这种结构协方差网络可以将AS个体与ASD和HC组区分开来。因此,对70名男性受试者的MRI数据进行了统计分析,包括26名ASD(年龄=14-50,IQ=92-132)、16名AS(年龄=7-58,IQ=93-133)和28名HC(年龄=9-39,IQ=95-144)。结构协方差网络的模式表明自闭症患者大脑区域之间GM密度的协变发生了改变。结论:这种改变的结构协方差可能被认为是导致自闭症患者认知功能障碍的大脑信息分离和整合效率较低的原因。我们希望这些发现能提高我们对自闭症病理生物学的理解,并为更有效的干预模式铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
64
审稿时长
4 weeks
期刊介绍: BCN is an international multidisciplinary journal that publishes editorials, original full-length research articles, short communications, reviews, methodological papers, commentaries, perspectives and “news and reports” in the broad fields of developmental, molecular, cellular, system, computational, behavioral, cognitive, and clinical neuroscience. No area in the neural related sciences is excluded from consideration, although priority is given to studies that provide applied insights into the functioning of the nervous system. BCN aims to advance our understanding of organization and function of the nervous system in health and disease, thereby improving the diagnosis and treatment of neural-related disorders. Manuscripts submitted to BCN should describe novel results generated by experiments that were guided by clearly defined aims or hypotheses. BCN aims to provide serious ties in interdisciplinary communication, accessibility to a broad readership inside Iran and the region and also in all other international academic sites, effective peer review process, and independence from all possible non-scientific interests. BCN also tries to empower national, regional and international collaborative networks in the field of neuroscience in Iran, Middle East, Central Asia and North Africa and to be the voice of the Iranian and regional neuroscience community in the world of neuroscientists. In this way, the journal encourages submission of editorials, review papers, commentaries, methodological notes and perspectives that address this scope.
期刊最新文献
Custom-made Implants for Chronic In Vivo Electrophysiological Recording From Primate's Brain Based on the Reconstructed Skull Model. A Case Report of Parental Germline Mosaicism in the PCDH19 Gene of Two Iranian Siblings. Behavioral and Biological Bases of Herding and Conformity. Effect of Low-intensity Transcranial Magnetic Stimulation on Response Inhibition of Adults With Attention-deficit/Hyperactivity Disorder. Efficacy of Percutaneous vs Transcutaneous Posterior Tibial Nerve Stimulation in Overactive Bladder Syndrome: A Randomized Clinical Trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1