[Role of group II and III mGluRs in carotid body plasticity induced by chronic intermittent hypoxia in rats].

Q3 Medicine Acta physiologica Sinica Pub Date : 2023-08-25
Chen-Lu Zhao, Chao-Hong Li, Yu-Zhen Liu
{"title":"[Role of group II and III mGluRs in carotid body plasticity induced by chronic intermittent hypoxia in rats].","authors":"Chen-Lu Zhao,&nbsp;Chao-Hong Li,&nbsp;Yu-Zhen Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the present study was to explore the role of group II and III metabotropic glutamate receptors (mGluRs) in carotid body plasticity induced by chronic intermittent hypoxia (CIH) in rats. Sprague Dawley (SD) rats were treated with CIH in Oxycycler A84 hypoxic chamber for 4 weeks, and the tail artery blood pressure was measured at the end of model preparation. RT-qPCR was performed to examine the mRNA expression levels of mGluR2/3/8 in rat carotid body. Carotid sinus nerve activity was detected by ex vivo carotid sinus nerve discharge recording technique, and acute intermittent hypoxia (AIH) was administered to induce carotid body sensory long-term facilitation (sLTF), in order to observe the role of group II and group III mGluRs in carotid body plasticity induced by CIH. The results showed that: 1) After 4 weeks of CIH exposure, the blood pressure of rats increased significantly; 2) CIH down-regulated the mRNA levels of mGluR2/3, and up-regulated the mRNA level of mGluR8 in the carotid body; 3) AIH induced sLTF in carotid body of CIH group. In the CIH group, activation of group II mGluRs had no effect on sLTF of carotid body, while activation of group III mGluRs completely inhibited sLTF. These results suggest that CIH increases blood pressure in rats, and group III mGluRs play an inhibitory role in CIH-induced carotid body plasticity in rats.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physiologica Sinica","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the present study was to explore the role of group II and III metabotropic glutamate receptors (mGluRs) in carotid body plasticity induced by chronic intermittent hypoxia (CIH) in rats. Sprague Dawley (SD) rats were treated with CIH in Oxycycler A84 hypoxic chamber for 4 weeks, and the tail artery blood pressure was measured at the end of model preparation. RT-qPCR was performed to examine the mRNA expression levels of mGluR2/3/8 in rat carotid body. Carotid sinus nerve activity was detected by ex vivo carotid sinus nerve discharge recording technique, and acute intermittent hypoxia (AIH) was administered to induce carotid body sensory long-term facilitation (sLTF), in order to observe the role of group II and group III mGluRs in carotid body plasticity induced by CIH. The results showed that: 1) After 4 weeks of CIH exposure, the blood pressure of rats increased significantly; 2) CIH down-regulated the mRNA levels of mGluR2/3, and up-regulated the mRNA level of mGluR8 in the carotid body; 3) AIH induced sLTF in carotid body of CIH group. In the CIH group, activation of group II mGluRs had no effect on sLTF of carotid body, while activation of group III mGluRs completely inhibited sLTF. These results suggest that CIH increases blood pressure in rats, and group III mGluRs play an inhibitory role in CIH-induced carotid body plasticity in rats.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[II组和III组mGluRs在慢性间歇性缺氧大鼠颈动脉体可塑性中的作用]。
本研究旨在探讨II组和III组代谢性谷氨酸受体(mGluRs)在慢性间歇性缺氧(CIH)大鼠颈动脉体可塑性中的作用。将SD大鼠置于Oxycycler A84缺氧舱中灌胃4周,造模结束后测量尾动脉血压。RT-qPCR检测mGluR2/3/8在大鼠颈动脉小体中的mRNA表达水平。采用离体颈动脉窦神经放电记录技术检测颈动脉窦神经活动,并采用急性间歇缺氧(AIH)诱导颈动脉体感觉长期促进(sLTF),观察II组和III组mGluRs对CIH诱导颈动脉体可塑性的作用。结果表明:1)暴露于CIH 4周后,大鼠血压显著升高;2) CIH下调颈动脉小体mGluR2/3 mRNA水平,上调颈动脉小体mGluR8 mRNA水平;3) AIH诱导CIH组颈动脉小体sLTF。在CIH组,II组mGluRs的激活对颈动脉小体sLTF无影响,而III组mGluRs的激活完全抑制了sLTF。上述结果提示,CIH可使大鼠血压升高,III组mGluRs对CIH诱导的大鼠颈动脉体可塑性有抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta physiologica Sinica
Acta physiologica Sinica Medicine-Medicine (all)
CiteScore
1.20
自引率
0.00%
发文量
4820
期刊介绍: Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.
期刊最新文献
[2-DG improves lung ischemia/reperfusion injury by inhibiting NLRP3-mediated pyroptosis in rats]. [Changes of ferroptosis related pathways in hippocampus of mice exposed to high-altitude hypoxia]. [Effects of stress on the structure and function of microglia]. [Endoplasmic reticulum quality control system: a potential target for the treatment of intervertebral disc degeneration]. [Involvement of microRNA-145/TGF-β in the regulation of swimming exercise on vascular calcification in type 2 diabetic rats].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1