Observation of combustion characteristics of droplet clusters in a premixed-spray flame by simultaneous monitoring of planar spray images and local chemiluminescence
{"title":"Observation of combustion characteristics of droplet clusters in a premixed-spray flame by simultaneous monitoring of planar spray images and local chemiluminescence","authors":"Shohji Tsushima, Hiroyasu Saitoh, Fumiteru Akamatsu, Masashi Katsuki","doi":"10.1016/S0082-0784(98)80041-6","DOIUrl":null,"url":null,"abstract":"<div><p>In order to better understand the combustion behavior of spray flames, simultaneous measurments of droplet cluster visualization using laser tomography and local OH chemiluminescence and CH-band emission using a newly develped optical probe system named the Multi-color Integrated Cassegrain Receiving Optics (MICRO) are applied to a premixed-spray flame. Time-series planar images of droplet clusters and their transient structures during combustion are examined using an Ar-ion laser and a high-speed digital CCD camera. By observing the droplet clusters and local chemiluminescence simultaneously in the premixed-spray flame, it is confirmed that some portions of the spray stream disappear very rapidly due to preferential flame propagation, while other portions of the spray stream survive over a long period to form droplet clusters, disappearing gradually from their outermost portions, which seems similar to a diffusion flame. The disappearance speed of individual droplet clusters in the premixed-spray flame, instead of a conventional evaporation rate of a single droplet, is defined and calculated by processing the obtained droplet-cluster planar images. The disappearance speed for rapid preferential flame propagation through easy-to-burn regions in the upstream region of the flame is about 2.5 m/s. On the other hand, the disappearance speed when droplet clusters burn dominated by a diffusion combustion mode in the downstream region of the flame is approximately 0.45 m/s.</p></div>","PeriodicalId":101203,"journal":{"name":"Symposium (International) on Combustion","volume":"27 2","pages":"Pages 1967-1974"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0082-0784(98)80041-6","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium (International) on Combustion","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0082078498800416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
In order to better understand the combustion behavior of spray flames, simultaneous measurments of droplet cluster visualization using laser tomography and local OH chemiluminescence and CH-band emission using a newly develped optical probe system named the Multi-color Integrated Cassegrain Receiving Optics (MICRO) are applied to a premixed-spray flame. Time-series planar images of droplet clusters and their transient structures during combustion are examined using an Ar-ion laser and a high-speed digital CCD camera. By observing the droplet clusters and local chemiluminescence simultaneously in the premixed-spray flame, it is confirmed that some portions of the spray stream disappear very rapidly due to preferential flame propagation, while other portions of the spray stream survive over a long period to form droplet clusters, disappearing gradually from their outermost portions, which seems similar to a diffusion flame. The disappearance speed of individual droplet clusters in the premixed-spray flame, instead of a conventional evaporation rate of a single droplet, is defined and calculated by processing the obtained droplet-cluster planar images. The disappearance speed for rapid preferential flame propagation through easy-to-burn regions in the upstream region of the flame is about 2.5 m/s. On the other hand, the disappearance speed when droplet clusters burn dominated by a diffusion combustion mode in the downstream region of the flame is approximately 0.45 m/s.