Multivariate spatiotemporal functional principal component analysis for modeling hospitalization and mortality rates in the dialysis population.

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2024-07-01 DOI:10.1093/biostatistics/kxad013
Qi Qian, Danh V Nguyen, Donatello Telesca, Esra Kurum, Connie M Rhee, Sudipto Banerjee, Yihao Li, Damla Senturk
{"title":"Multivariate spatiotemporal functional principal component analysis for modeling hospitalization and mortality rates in the dialysis population.","authors":"Qi Qian, Danh V Nguyen, Donatello Telesca, Esra Kurum, Connie M Rhee, Sudipto Banerjee, Yihao Li, Damla Senturk","doi":"10.1093/biostatistics/kxad013","DOIUrl":null,"url":null,"abstract":"<p><p>Dialysis patients experience frequent hospitalizations and a higher mortality rate compared to other Medicare populations, in whom hospitalizations are a major contributor to morbidity, mortality, and healthcare costs. Patients also typically remain on dialysis for the duration of their lives or until kidney transplantation. Hence, there is growing interest in studying the spatiotemporal trends in the correlated outcomes of hospitalization and mortality among dialysis patients as a function of time starting from transition to dialysis across the United States Utilizing national data from the United States Renal Data System (USRDS), we propose a novel multivariate spatiotemporal functional principal component analysis model to study the joint spatiotemporal patterns of hospitalization and mortality rates among dialysis patients. The proposal is based on a multivariate Karhunen-Loéve expansion that describes leading directions of variation across time and induces spatial correlations among region-specific scores. An efficient estimation procedure is proposed using only univariate principal components decompositions and a Markov Chain Monte Carlo framework for targeting the spatial correlations. The finite sample performance of the proposed method is studied through simulations. Novel applications to the USRDS data highlight hot spots across the United States with higher hospitalization and/or mortality rates and time periods of elevated risk.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"718-735"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad013","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dialysis patients experience frequent hospitalizations and a higher mortality rate compared to other Medicare populations, in whom hospitalizations are a major contributor to morbidity, mortality, and healthcare costs. Patients also typically remain on dialysis for the duration of their lives or until kidney transplantation. Hence, there is growing interest in studying the spatiotemporal trends in the correlated outcomes of hospitalization and mortality among dialysis patients as a function of time starting from transition to dialysis across the United States Utilizing national data from the United States Renal Data System (USRDS), we propose a novel multivariate spatiotemporal functional principal component analysis model to study the joint spatiotemporal patterns of hospitalization and mortality rates among dialysis patients. The proposal is based on a multivariate Karhunen-Loéve expansion that describes leading directions of variation across time and induces spatial correlations among region-specific scores. An efficient estimation procedure is proposed using only univariate principal components decompositions and a Markov Chain Monte Carlo framework for targeting the spatial correlations. The finite sample performance of the proposed method is studied through simulations. Novel applications to the USRDS data highlight hot spots across the United States with higher hospitalization and/or mortality rates and time periods of elevated risk.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透析人群住院率和死亡率建模的多变量时空功能主成分分析
与其他医疗保险人群相比,透析患者经历频繁的住院治疗和更高的死亡率,在其他人群中,住院治疗是发病率、死亡率和医疗费用的主要因素。患者通常在其一生中或直到肾移植前都要进行透析。因此,人们越来越有兴趣研究透析患者住院和死亡率相关结果的时空趋势,作为美国各地从过渡到透析的时间的函数。我们提出了一种新的多元时空功能主成分分析模型来研究透析患者住院率和死亡率的联合时空模式。该建议基于多元karhunen - losamade扩展,该扩展描述了跨时间变化的主要方向,并诱导了区域特定分数之间的空间相关性。提出了一种仅使用单变量主成分分解和马尔可夫链蒙特卡罗框架针对空间相关性的有效估计方法。通过仿真研究了该方法的有限样本性能。对USRDS数据的新应用突出了美国各地住院率和/或死亡率较高的热点地区以及风险升高的时间段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction. Simultaneous clustering and estimation of networks in multiple graphical models. A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data. A modeling framework for detecting and leveraging node-level information in Bayesian network inference. A marginal structural model for normal tissue complication probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1