Mina Luo, Chunmei Zhu, Changcheng Chen, Fu Chen, Yuanqiang Zhu, Xuemei Wei
{"title":"Efficient removal of Cr from aqueous solution by catechol/m-phenylenediamine nanospheres combined with Fe(II).","authors":"Mina Luo, Chunmei Zhu, Changcheng Chen, Fu Chen, Yuanqiang Zhu, Xuemei Wei","doi":"10.1080/10934529.2023.2241315","DOIUrl":null,"url":null,"abstract":"<p><p>The discharge of chromium-containing wastewater in industrial production causes resource loss and damage to the ecological environment. Currently, various phenolamine materials have been used to remove chromium, but their harsh adsorption conditions bring many difficulties. For example, ideal chromium removal is only achieved at low pH. In this study, we synthesized catechol/m-phenylenediamine nanospheres (CMN) and combined CMN with Fe(II) for Cr removal from aqueous solutions, and Fe(II) comes from FeSO<sub>4</sub>·7H<sub>2</sub>O. CMN was characterized and analyzed by field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS). The adsorption performance was studied through a series of adsorption experiments. When <i>C</i><sub>0</sub> = 900 mg/L and pH = 6, the maximum adsorption capacity obtained in the experiment was 977.1 mg/g. It maintains excellent adsorption properties in acidic, neutral and alkaline environments. The results of the adsorption mechanism showed that the ultra-high adsorption capacity of CMN and Fe(II) for Cr was the result of the synergistic effect of adsorption and reduction, including electrostatic attraction, reduction and coprecipitation. CMN is expected to be an ideal adsorbent for Cr removal in aqueous solution due to its low cost, high biocompatibility and high efficiency in Cr removal.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2241315","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The discharge of chromium-containing wastewater in industrial production causes resource loss and damage to the ecological environment. Currently, various phenolamine materials have been used to remove chromium, but their harsh adsorption conditions bring many difficulties. For example, ideal chromium removal is only achieved at low pH. In this study, we synthesized catechol/m-phenylenediamine nanospheres (CMN) and combined CMN with Fe(II) for Cr removal from aqueous solutions, and Fe(II) comes from FeSO4·7H2O. CMN was characterized and analyzed by field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS). The adsorption performance was studied through a series of adsorption experiments. When C0 = 900 mg/L and pH = 6, the maximum adsorption capacity obtained in the experiment was 977.1 mg/g. It maintains excellent adsorption properties in acidic, neutral and alkaline environments. The results of the adsorption mechanism showed that the ultra-high adsorption capacity of CMN and Fe(II) for Cr was the result of the synergistic effect of adsorption and reduction, including electrostatic attraction, reduction and coprecipitation. CMN is expected to be an ideal adsorbent for Cr removal in aqueous solution due to its low cost, high biocompatibility and high efficiency in Cr removal.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.