Examination of the environmental behavior of phosphogypsum with the application of lab-scale experiment.

Maria Pliaka, Georgios Gaidajis
{"title":"Examination of the environmental behavior of phosphogypsum with the application of lab-scale experiment.","authors":"Maria Pliaka,&nbsp;Georgios Gaidajis","doi":"10.1080/10934529.2023.2208994","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphogypsum (PG) is a reject of the phosphoric acid production process in phosphate fertilizer industries. The process results in the production of relatively large quantities of PG that it might cause serious environmental and human health concerns. The data of a laboratory investigation of PG are presented here. Lab-scale experiments with lysimeters were conducted in order to simulate and examine the environmental characteristics and the temporal behavior of PG leachates in terms of physicochemical characteristics and chemical composition. Based on the results, leachates from already deposited for many years PG or its mixture with marble powder, seemed to have better pH and conductivity values and lower elemental concentrations compared to leachates from freshly disposed PG. However, the leachates characteristics improve and stabilize in both cases after four days of irrigation or of 1080-1240 mm of rain. Most major elements were found to have minimal leachability, and the material satisfied the environmental limits for its disposal at landfills for inert and non-hazardous wastes.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2208994","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

Abstract

Phosphogypsum (PG) is a reject of the phosphoric acid production process in phosphate fertilizer industries. The process results in the production of relatively large quantities of PG that it might cause serious environmental and human health concerns. The data of a laboratory investigation of PG are presented here. Lab-scale experiments with lysimeters were conducted in order to simulate and examine the environmental characteristics and the temporal behavior of PG leachates in terms of physicochemical characteristics and chemical composition. Based on the results, leachates from already deposited for many years PG or its mixture with marble powder, seemed to have better pH and conductivity values and lower elemental concentrations compared to leachates from freshly disposed PG. However, the leachates characteristics improve and stabilize in both cases after four days of irrigation or of 1080-1240 mm of rain. Most major elements were found to have minimal leachability, and the material satisfied the environmental limits for its disposal at landfills for inert and non-hazardous wastes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷石膏的环境行为与实验室规模实验的应用。
磷石膏是磷肥工业中磷酸生产过程中产生的废渣。该过程导致生产相对大量的PG,这可能会造成严重的环境和人类健康问题。这里提供了PG的实验室调查数据。为了模拟和研究PG渗滤液在物理化学特征和化学成分方面的环境特征和时间行为,进行了实验室规模的渗滤液实验。结果表明,与新处理的PG相比,已经沉积多年的PG或其与大理石粉的混合物的渗滤液似乎具有更好的pH值和电导率值,元素浓度更低。然而,在灌溉4天后或1080-1240毫米降雨后,这两种情况下的渗滤液特性都有所改善并趋于稳定。大多数主要元素被发现具有最低的浸出性,并且材料满足其在垃圾填埋场处置惰性和非危险废物的环境限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
期刊最新文献
In vitro assessment of acute airway effects from real-life mixtures of ozone-initiated oxidation products of limonene and printer exhaust. Monitoring of ketamine-based emerging contaminants in wastewater: a direct-injection method and fragmentation pathway study. Precision forecasting of spray-dry desulfurization using Gaussian noise data augmentation and k-fold cross-validation optimized neural computing. Machine learning, a powerful tool for the prediction of BiVO4 nanoparticles efficiency in photocatalytic degradation of organic dyes. Application of machine learning approach (artificial neural network) and shrinking core model in cobalt (II) and copper (II) leaching process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1