PP2A and its adapter protein IER5 induce the DNA-binding ability and target gene expression of E2F1 via dephosphorylation at serine 375

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et Biophysica Acta-Gene Regulatory Mechanisms Pub Date : 2023-09-01 DOI:10.1016/j.bbagrm.2023.194960
Hiroto Takeuchi, Mayuko Koga, Kuriko Doi, Hiroshi Sakurai
{"title":"PP2A and its adapter protein IER5 induce the DNA-binding ability and target gene expression of E2F1 via dephosphorylation at serine 375","authors":"Hiroto Takeuchi,&nbsp;Mayuko Koga,&nbsp;Kuriko Doi,&nbsp;Hiroshi Sakurai","doi":"10.1016/j.bbagrm.2023.194960","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The transcription factor E2F1 participates in </span>cell cycle control<span> through transcriptional activation<span> of genes that promote S-phase entry. E2F1 is also linked to the expression of proapoptotic genes, and the loss of E2F1 activity facilitates tumor progression by reducing cellular apoptosis. Phosphorylation controlled by protein kinases and phosphatases is the major posttranslational modification and regulates the cellular levels and transactivator function of E2F1. Here, we characterize the regulatory roles of serine-375 (S375), one of the major phosphorylation sites of E2F1. Cyclin-dependent kinases such as CDK8 phosphorylate at S375 of E2F1, which is dephosphorylated by protein phosphatase 2A (PP2A) containing the B55 regulatory subunit. The PP2A adapter protein IER5 binds to both PP2A/B55 and E2F1 and assists </span></span></span>dephosphorylation at S375 by PP2A. S375-dephosphorylated E2F1 exhibits higher DNA-binding affinity than the phosphorylated form. Although the promoter regions of proapoptotic genes are less occupied by E2F1 in cells, an increase in S375-dephosphorylated E2F1 induces preferential binding of E2F1 to the proapoptotic gene promoters and their expression. Our data identify PP2A/B55-IER5 as a critical regulator of E2F1 and suggest that the phosphorylation state of E2F1 is an important determinant for the expression of proapoptotic genes.</p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 3","pages":"Article 194960"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187493992300055X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transcription factor E2F1 participates in cell cycle control through transcriptional activation of genes that promote S-phase entry. E2F1 is also linked to the expression of proapoptotic genes, and the loss of E2F1 activity facilitates tumor progression by reducing cellular apoptosis. Phosphorylation controlled by protein kinases and phosphatases is the major posttranslational modification and regulates the cellular levels and transactivator function of E2F1. Here, we characterize the regulatory roles of serine-375 (S375), one of the major phosphorylation sites of E2F1. Cyclin-dependent kinases such as CDK8 phosphorylate at S375 of E2F1, which is dephosphorylated by protein phosphatase 2A (PP2A) containing the B55 regulatory subunit. The PP2A adapter protein IER5 binds to both PP2A/B55 and E2F1 and assists dephosphorylation at S375 by PP2A. S375-dephosphorylated E2F1 exhibits higher DNA-binding affinity than the phosphorylated form. Although the promoter regions of proapoptotic genes are less occupied by E2F1 in cells, an increase in S375-dephosphorylated E2F1 induces preferential binding of E2F1 to the proapoptotic gene promoters and their expression. Our data identify PP2A/B55-IER5 as a critical regulator of E2F1 and suggest that the phosphorylation state of E2F1 is an important determinant for the expression of proapoptotic genes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PP2A及其适配蛋白IER5通过丝氨酸375的去磷酸化诱导E2F1的dna结合能力和靶基因表达
转录因子E2F1通过促进S期进入的基因的转录激活参与细胞周期控制。E2F1也与促凋亡基因的表达有关,E2F1活性的丧失通过减少细胞凋亡促进肿瘤进展。由蛋白激酶和磷酸酶控制的磷酸化是主要的翻译后修饰,并调节E2F1的细胞水平和反式激活因子功能。在这里,我们描述了丝氨酸-375(S375)的调节作用,丝氨酸-375是E2F1的主要磷酸化位点之一。细胞周期蛋白依赖性激酶如CDK8在E2F1的S375磷酸化,其被含有B55调节亚基的蛋白磷酸酶2A(PP2A)去磷酸化。PP2A衔接蛋白IER5与PP2A/B55和E2F1结合,并协助PP2A在S375处去磷酸化。S375去磷酸化的E2F1表现出比磷酸化形式更高的DNA结合亲和力。尽管细胞中促凋亡基因的启动子区域较少被E2F1占据,但S375去磷酸化的E2F1的增加诱导了E2F1与促凋亡基因启动子的优先结合及其表达。我们的数据确定PP2A/B55-IER5是E2F1的关键调节因子,并表明E2F1的磷酸化状态是促凋亡基因表达的重要决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
2.10%
发文量
63
审稿时长
44 days
期刊介绍: BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.
期刊最新文献
Transcriptional responses of three slc39a/zip members (zip4, zip5 and zip9) and their roles in Zn metabolism in grass carp (Ctenopharyngodon idella). Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA. Competing endogenous RNAs network and therapeutic implications: New horizons in disease research. Editorial Board Bioinformatic meta-analysis of transcriptomics of developing Drosophila muscles identifies temporal regulatory transcription factors including a Notch effector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1