Senescent cardiomyocytes contribute to cardiac dysfunction following myocardial infarction.

Rachael E Redgrave, Emily Dookun, Laura K Booth, Maria Camacho Encina, Omowumi Folaranmi, Simon Tual-Chalot, Jason H Gill, W Andrew Owens, Ioakim Spyridopoulos, João F Passos, Gavin D Richardson
{"title":"Senescent cardiomyocytes contribute to cardiac dysfunction following myocardial infarction.","authors":"Rachael E Redgrave, Emily Dookun, Laura K Booth, Maria Camacho Encina, Omowumi Folaranmi, Simon Tual-Chalot, Jason H Gill, W Andrew Owens, Ioakim Spyridopoulos, João F Passos, Gavin D Richardson","doi":"10.1038/s41514-023-00113-5","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodelling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodelling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodelling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodelling by spreading senescence to other cell-types. Collectively this study presents the demonstration that senescent cardiomyocytes are major contributors to myocardial remodelling and dysfunction following a myocardial infarction. Therefore, to maximise the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimise senolytic strategies to target this cell lineage.</p>","PeriodicalId":19348,"journal":{"name":"npj Aging","volume":"9 1","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-023-00113-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodelling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodelling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodelling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodelling by spreading senescence to other cell-types. Collectively this study presents the demonstration that senescent cardiomyocytes are major contributors to myocardial remodelling and dysfunction following a myocardial infarction. Therefore, to maximise the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimise senolytic strategies to target this cell lineage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衰老的心肌细胞会导致心肌梗死后的心脏功能障碍。
心肌梗死是发病率和死亡率的主要原因。虽然再灌注现在是标准的治疗方法,但导致心力衰竭的病理重塑仍然是一个临床问题。细胞衰老已被证明有助于疾病的病理生理学和senolytic navitoclax的治疗可以减轻炎症,减少不良的心肌重塑,并改善功能恢复。然而,目前尚不清楚哪些衰老细胞群体参与了这些过程。为了确定衰老的心肌细胞是否参与心肌梗死后的疾病病理生理学,我们建立了一个转基因模型,其中p16(CDKN2A)表达在心肌细胞群体中被特异性敲除。心肌梗死后,与对照动物相比,缺乏心肌细胞p16表达的小鼠在心肌细胞肥大方面没有表现出差异,但表现出心脏功能改善和疤痕大小显著减小。这些数据表明衰老的心肌细胞参与病理性心肌重塑。重要的是,抑制心肌细胞衰老导致其他心肌谱系中衰老相关炎症减少和衰老相关标志物减少,这与心肌细胞通过将衰老传播到其他细胞类型来促进病理重塑的假设一致。总之,这项研究表明,衰老的心肌细胞是心肌梗死后心肌重塑和功能障碍的主要因素。因此,为了最大限度地发挥临床转化的潜力,重要的是进一步了解心肌细胞衰老的机制,以及如何优化针对该细胞谱系的senolytic策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerated epigenetic aging and decreased natural killer cells based on DNA methylation in patients with untreated major depressive disorder. Elevated plasma sclerostin is associated with high brain amyloid-β load in cognitively normal older adults. Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: a systems biology approach. Mitochonic acid 5 attenuates age-related neuromuscular dysfunction associated with mitochondrial Ca2+ overload in Caenorhabditis elegans. Unbiased proteomics and multivariable regularized regression techniques identify SMOC1, NOG, APCS, and NTN1 in an Alzheimer's disease brain proteomic signature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1