{"title":"Gut Microbiota Metabolites Mediate Bax to Reduce Neuronal Apoptosis via cGAS/STING Axis in Epilepsy.","authors":"Jinxia Zhai, Chao Wang, Liang Jin, Fangtao Liu, Yinzhu Xiao, Hongfeng Gu, Mingjie Liu, Yongjun Chen","doi":"10.1007/s12035-023-03545-y","DOIUrl":null,"url":null,"abstract":"<p><p>The beneficial effects of gut flora on reducing nerve cell apoptosis and inflammation and improving epilepsy (EP) symptoms have been reported, but the specific mechanism of action is still unclear. A series of in vitro and in vivo experiments revealed the relationship between gut microbiota metabolites and the cGAS/STING axis and their role in EP. These results suggest that antibiotic-induced dysbiosis of gut microbiota exacerbated epileptic symptoms, probiotic supplements reduced epileptic symptoms in mice. Antibiotics and probiotics altered the diversity and composition of gut microbiota. The changes in gut bacteria composition, such as in the abundance of Firmicutes, Bacteroidetes, Lactobacillus and Ruminococcus, were associated with the production of short-chain fatty acids (SCFA) in the gut. The concentrations of propionate, butyrate and isovalerate were changed after feeding antibiotics and probiotics, and the increase in butyrate levels reduced the expression of cGAS/STING in nerve cell further reduced Bax protein expression. The reduction of Bax protein attenuated the hippocampal neuron cell apoptosis in PTZ-induced EP and EP progression. Our findings provide new insights into the roles and mechanisms of action of the gut microbiota in attenuating EP symptoms and progression.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9794-9809"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-023-03545-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The beneficial effects of gut flora on reducing nerve cell apoptosis and inflammation and improving epilepsy (EP) symptoms have been reported, but the specific mechanism of action is still unclear. A series of in vitro and in vivo experiments revealed the relationship between gut microbiota metabolites and the cGAS/STING axis and their role in EP. These results suggest that antibiotic-induced dysbiosis of gut microbiota exacerbated epileptic symptoms, probiotic supplements reduced epileptic symptoms in mice. Antibiotics and probiotics altered the diversity and composition of gut microbiota. The changes in gut bacteria composition, such as in the abundance of Firmicutes, Bacteroidetes, Lactobacillus and Ruminococcus, were associated with the production of short-chain fatty acids (SCFA) in the gut. The concentrations of propionate, butyrate and isovalerate were changed after feeding antibiotics and probiotics, and the increase in butyrate levels reduced the expression of cGAS/STING in nerve cell further reduced Bax protein expression. The reduction of Bax protein attenuated the hippocampal neuron cell apoptosis in PTZ-induced EP and EP progression. Our findings provide new insights into the roles and mechanisms of action of the gut microbiota in attenuating EP symptoms and progression.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.