A Multiscale Attentional Unet Model for Automatic Segmentation in Medical Ultrasound Images.

IF 2.5 4区 医学 Q1 ACOUSTICS Ultrasonic Imaging Pub Date : 2023-07-01 DOI:10.1177/01617346231169789
Rui Wang, Haoyuan Zhou, Peng Fu, Hui Shen, Yang Bai
{"title":"A Multiscale Attentional Unet Model for Automatic Segmentation in Medical Ultrasound Images.","authors":"Rui Wang,&nbsp;Haoyuan Zhou,&nbsp;Peng Fu,&nbsp;Hui Shen,&nbsp;Yang Bai","doi":"10.1177/01617346231169789","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasonography has become an essential part of clinical diagnosis owing to its noninvasive, and real-time nature. To assist diagnosis, automatically segmenting a region of interest (ROI) in ultrasound images is becoming a vital part of computer-aided diagnosis (CAD). However, segmenting ROIs on medical images with relatively low contrast is a challenging task. To better achieve medical ROI segmentation, we propose an efficient module denoted as multiscale attentional convolution (MSAC), utilizing cascaded convolutions and a self-attention approach to concatenate features from various receptive field scales. Then, MSAC-Unet is constructed based on Unet, employing MSAC instead of the standard convolution in each encoder and decoder for segmentation. In this study, two representative types of ultrasound images, one of the thyroid nodules and the other of the brachial plexus nerves, were used to assess the effectiveness of the proposed approach. The best segmentation results from MSAC-Unet were achieved on two thyroid nodule datasets (TND-PUH3 and DDTI) and a brachial plexus nerve dataset (NSD) with Dice coefficients of 0.822, 0.792, and 0.746, respectively. The analysis of segmentation results shows that our MSAC-Unet greatly improves the segmentation accuracy with more reliable ROI edges and boundaries, decreasing the number of erroneously segmented ROIs in ultrasound images.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346231169789","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonography has become an essential part of clinical diagnosis owing to its noninvasive, and real-time nature. To assist diagnosis, automatically segmenting a region of interest (ROI) in ultrasound images is becoming a vital part of computer-aided diagnosis (CAD). However, segmenting ROIs on medical images with relatively low contrast is a challenging task. To better achieve medical ROI segmentation, we propose an efficient module denoted as multiscale attentional convolution (MSAC), utilizing cascaded convolutions and a self-attention approach to concatenate features from various receptive field scales. Then, MSAC-Unet is constructed based on Unet, employing MSAC instead of the standard convolution in each encoder and decoder for segmentation. In this study, two representative types of ultrasound images, one of the thyroid nodules and the other of the brachial plexus nerves, were used to assess the effectiveness of the proposed approach. The best segmentation results from MSAC-Unet were achieved on two thyroid nodule datasets (TND-PUH3 and DDTI) and a brachial plexus nerve dataset (NSD) with Dice coefficients of 0.822, 0.792, and 0.746, respectively. The analysis of segmentation results shows that our MSAC-Unet greatly improves the segmentation accuracy with more reliable ROI edges and boundaries, decreasing the number of erroneously segmented ROIs in ultrasound images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学超声图像自动分割的多尺度关注Unet模型。
超声检查因其无创性和实时性而成为临床诊断的重要组成部分。为了辅助诊断,自动分割超声图像中的感兴趣区域(ROI)已成为计算机辅助诊断(CAD)的重要组成部分。然而,在对比度相对较低的医学图像上分割roi是一项具有挑战性的任务。为了更好地实现医疗ROI分割,我们提出了一个高效的模块,称为多尺度注意卷积(MSAC),利用级联卷积和自注意方法来连接来自不同感受野尺度的特征。然后,在Unet的基础上构建MSAC-Unet,在每个编码器和解码器中使用MSAC代替标准卷积进行分割。在本研究中,两种具有代表性的超声图像,一种是甲状腺结节,另一种是臂丛神经,被用来评估所提出的方法的有效性。MSAC-Unet在两个甲状腺结节数据集(TND-PUH3和DDTI)和一个臂丛神经数据集(NSD)上的分割效果最好,Dice系数分别为0.822、0.792和0.746。对分割结果的分析表明,我们的MSAC-Unet极大地提高了分割精度,具有更可靠的ROI边缘和边界,减少了超声图像中错误分割ROI的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonic Imaging
Ultrasonic Imaging 医学-工程:生物医学
CiteScore
5.10
自引率
8.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging
期刊最新文献
Image Features and Diagnostic Value of Contrast-Enhanced Ultrasound for Ductal Carcinoma In Situ of the Breast: Preliminary Findings. Ultrasonic Imaging of Deeper Bone Defect Using Virtual Source Synthetic Aperture with Phased Shift Migration: A Phantom Study. Predictive Value of the Nomogram Model Based on Multimodal Ultrasound Features for Benign and Malignant Thyroid Nodules of C-TIRADS Category 4. High Frequency Ultrasound Transducer Based on Sm-Doped Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 Ceramic for Intravascular Ultrasound Imaging. Development and Assessment of a Predictive Model for Ki-67 Expression Using Ultrasound Indicators and Non-Morphological Magnetic Resonance Imaging Parameters Before Breast Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1