Ji Chen, Jon Hochstein, Christina Kim, Diane Damiano, Thomas Bulea
{"title":"Design Advancements toward a Wearable Pediatric Robotic Knee Exoskeleton for Overground Gait Rehabilitation.","authors":"Ji Chen, Jon Hochstein, Christina Kim, Diane Damiano, Thomas Bulea","doi":"10.1109/biorob.2018.8487195","DOIUrl":null,"url":null,"abstract":"<p><p>Exoskeleton assisted gait training in children with cerebral palsy (CP) offers the potential to increase therapy dosage and intensity compared to current approaches. Here, we report the design and characterization of a pediatric knee exoskeleton for gait training outside of a clinical environment. A multi-layered closed loop control system and a microcontroller based data acquisition system were implemented to provide individualized control approaches and achieve device portability for home use. Step response tests show the averaged 90% rise time was 45 ms for 5 Nm, 35 ms for 10 Nm, 40 ms for 15 Nm. The gain-limited closed-loop torque bandwidth was about 9 Hz with a 9 Nm amplitude chirp in knee flexion and extension. The actuator has low output impedance (<0.5 Nm) at low frequencies expected during use. Future work will investigate the long term effects of providing children with CP knee extension assistance during daily walking on gait biomechanics with, and without, the device.</p>","PeriodicalId":74522,"journal":{"name":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","volume":"2018 ","pages":"37-42"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/biorob.2018.8487195","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/biorob.2018.8487195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Exoskeleton assisted gait training in children with cerebral palsy (CP) offers the potential to increase therapy dosage and intensity compared to current approaches. Here, we report the design and characterization of a pediatric knee exoskeleton for gait training outside of a clinical environment. A multi-layered closed loop control system and a microcontroller based data acquisition system were implemented to provide individualized control approaches and achieve device portability for home use. Step response tests show the averaged 90% rise time was 45 ms for 5 Nm, 35 ms for 10 Nm, 40 ms for 15 Nm. The gain-limited closed-loop torque bandwidth was about 9 Hz with a 9 Nm amplitude chirp in knee flexion and extension. The actuator has low output impedance (<0.5 Nm) at low frequencies expected during use. Future work will investigate the long term effects of providing children with CP knee extension assistance during daily walking on gait biomechanics with, and without, the device.