hybpiper-nf and paragone-nf: Containerization and additional options for target capture assembly and paralog resolution

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-07-17 DOI:10.1002/aps3.11532
Chris Jackson, Todd McLay, Alexander N. Schmidt-Lebuhn
{"title":"hybpiper-nf and paragone-nf: Containerization and additional options for target capture assembly and paralog resolution","authors":"Chris Jackson,&nbsp;Todd McLay,&nbsp;Alexander N. Schmidt-Lebuhn","doi":"10.1002/aps3.11532","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>The HybPiper pipeline has become one of the most widely used tools for the assembly of target capture data for phylogenomic analysis. After the production of locus sequences and before phylogenetic analysis, the identification of paralogs is a critical step for ensuring the accurate inference of evolutionary relationships. Algorithmic approaches using gene tree topologies for the inference of ortholog groups are computationally efficient and broadly applicable to non-model organisms, especially in the absence of a known species tree.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>We containerized and expanded the functionality of both HybPiper and a pipeline for the inference of ortholog groups, providing novel options for the treatment of target capture sequence data, and allowing seamless use of the outputs of the former as inputs for the latter. The Singularity container presented here includes all dependencies, and the corresponding pipelines (hybpiper-nf and paragone-nf, respectively) are implemented via two Nextflow scripts for easier deployment and to vastly reduce the number of commands required for their use.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The hybpiper-nf and paragone-nf pipelines are easily installed and provide a user-friendly experience and robust results to the phylogenetic community. They are used by the Australian Angiosperm Tree of Life project. The pipelines are available at https://github.com/chrisjackson-pellicle/hybpiper-nf and https://github.com/chrisjackson-pellicle/paragone-nf.</p>\n </section>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/1c/APS3-11-e11532.PMC10439820.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

Premise

The HybPiper pipeline has become one of the most widely used tools for the assembly of target capture data for phylogenomic analysis. After the production of locus sequences and before phylogenetic analysis, the identification of paralogs is a critical step for ensuring the accurate inference of evolutionary relationships. Algorithmic approaches using gene tree topologies for the inference of ortholog groups are computationally efficient and broadly applicable to non-model organisms, especially in the absence of a known species tree.

Methods and Results

We containerized and expanded the functionality of both HybPiper and a pipeline for the inference of ortholog groups, providing novel options for the treatment of target capture sequence data, and allowing seamless use of the outputs of the former as inputs for the latter. The Singularity container presented here includes all dependencies, and the corresponding pipelines (hybpiper-nf and paragone-nf, respectively) are implemented via two Nextflow scripts for easier deployment and to vastly reduce the number of commands required for their use.

Conclusions

The hybpiper-nf and paragone-nf pipelines are easily installed and provide a user-friendly experience and robust results to the phylogenetic community. They are used by the Australian Angiosperm Tree of Life project. The pipelines are available at https://github.com/chrisjackson-pellicle/hybpiper-nf and https://github.com/chrisjackson-pellicle/paragone-nf.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
hybpipe -nf和paragone-nf:用于目标捕获组装和并行解析的容器化和附加选项
HybPiper管道已成为用于系统基因组分析的目标捕获数据组装的最广泛使用的工具之一。在基因座序列产生之后,在系统发育分析之前,类同物的识别是确保准确推断进化关系的关键步骤。使用基因树拓扑来推断同源群的算法方法计算效率高,广泛适用于非模式生物,特别是在缺乏已知物种树的情况下。方法和结果我们对HybPiper和同源群推断管道的功能进行了容器化和扩展,为目标捕获序列数据的处理提供了新的选择,并允许将前者的输出作为后者的输入无缝使用。这里展示的Singularity容器包含了所有依赖项,相应的管道(分别是hybpipe -nf和paragone-nf)是通过两个Nextflow脚本实现的,这样更容易部署,并大大减少了使用它们所需的命令数量。结论hybpipe -nf和paragone-nf管道安装方便,操作方便,结果可靠。它们被澳大利亚被子植物生命之树项目所使用。这些管道可在https://github.com/chrisjackson-pellicle/hybpiper-nf和https://github.com/chrisjackson-pellicle/paragone-nf上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1