Fatigue life prediction considering variability for additively manufactured pure titanium clasps.

IF 3.2 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Journal of prosthodontic research Pub Date : 2024-04-08 Epub Date: 2023-08-24 DOI:10.2186/jpr.JPR_D_23_00074
Kento Odaka, Shota Kamiyama, Naoki Takano, Yoshihiko Uematsu, Satoru Matsunaga
{"title":"Fatigue life prediction considering variability for additively manufactured pure titanium clasps.","authors":"Kento Odaka, Shota Kamiyama, Naoki Takano, Yoshihiko Uematsu, Satoru Matsunaga","doi":"10.2186/jpr.JPR_D_23_00074","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to develop a numerical prediction method for the average and standard deviation values of the largely varied fatigue life of additively manufactured commercially pure titanium (CPTi grade 2) clasps. Accordingly, the proposed method is validated by applying it to clasps of different shapes.</p><p><strong>Methods: </strong>The Smith-Watson-Topper (SWT) equation and finite element analysis (FEA) were used to predict the average fatigue life. The variability was expressed by a 95% reliability range envelope based on the experimentally determined standard deviation.</p><p><strong>Results: </strong>When predicting the average fatigue life, the previously determined fatigue parameters implemented in the SWT equation were found to be useful after conducting fatigue tests using a displacement-controlled fatigue testing machine. The standard deviation with respect to stroke and fatigue life was determined for each clasp type to predict variability. The proposed prediction method effectively covered the experimental data. Subsequently, the prediction method was applied to clasps of different shapes and validated through fatigue tests using 22 specimens. Finally, the fracture surface was observed using scanning electron microscopy (SEM). Many manufacturing process-induced defects were observed; however, only the surface defects where the maximum tensile stress occurred were crucial.</p><p><strong>Conclusions: </strong>It was confirmed that the fatigue life of additively manufactured pure titanium parts is predictable before the manufacturing process considering its variability by performing only static elasto-plastic FEA. This outcome contributes to the quality assurance of patient-specific clasps without any experimental investigation, reducing total costs and response time.</p>","PeriodicalId":16887,"journal":{"name":"Journal of prosthodontic research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of prosthodontic research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_23_00074","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aims to develop a numerical prediction method for the average and standard deviation values of the largely varied fatigue life of additively manufactured commercially pure titanium (CPTi grade 2) clasps. Accordingly, the proposed method is validated by applying it to clasps of different shapes.

Methods: The Smith-Watson-Topper (SWT) equation and finite element analysis (FEA) were used to predict the average fatigue life. The variability was expressed by a 95% reliability range envelope based on the experimentally determined standard deviation.

Results: When predicting the average fatigue life, the previously determined fatigue parameters implemented in the SWT equation were found to be useful after conducting fatigue tests using a displacement-controlled fatigue testing machine. The standard deviation with respect to stroke and fatigue life was determined for each clasp type to predict variability. The proposed prediction method effectively covered the experimental data. Subsequently, the prediction method was applied to clasps of different shapes and validated through fatigue tests using 22 specimens. Finally, the fracture surface was observed using scanning electron microscopy (SEM). Many manufacturing process-induced defects were observed; however, only the surface defects where the maximum tensile stress occurred were crucial.

Conclusions: It was confirmed that the fatigue life of additively manufactured pure titanium parts is predictable before the manufacturing process considering its variability by performing only static elasto-plastic FEA. This outcome contributes to the quality assurance of patient-specific clasps without any experimental investigation, reducing total costs and response time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑到增材制造纯钛扣的变异性的疲劳寿命预测。
目的:本研究旨在开发一种数值预测方法,用于预测添加式制造的商用纯钛(CPTi 2 级)扣件大体变化的疲劳寿命的平均值和标准偏差值。因此,将所提出的方法应用于不同形状的扣具进行了验证:方法:使用 Smith-Watson-Topper (SWT) 方程和有限元分析 (FEA) 预测平均疲劳寿命。变异性由基于实验确定的标准偏差的 95% 可靠性范围包络表示:使用位移控制疲劳试验机进行疲劳试验后发现,在预测平均疲劳寿命时,SWT 方程中先前确定的疲劳参数非常有用。为预测变异性,确定了每种扣类型在行程和疲劳寿命方面的标准偏差。所提出的预测方法有效地覆盖了实验数据。随后,该预测方法被应用于不同形状的扣件,并通过 22 个试样的疲劳试验进行了验证。最后,使用扫描电子显微镜(SEM)对断裂表面进行了观察。观察到了许多制造过程引起的缺陷,但只有发生最大拉伸应力的表面缺陷才是关键:结论:研究证实,考虑到制造过程的可变性,只需进行静态弹塑性有限元分析,就能在制造之前预测添加制造的纯钛零件的疲劳寿命。这一结果有助于在不进行任何实验研究的情况下保证患者专用扣件的质量,从而降低总成本并缩短响应时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of prosthodontic research
Journal of prosthodontic research DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
6.90
自引率
11.10%
发文量
161
期刊介绍: Journal of Prosthodontic Research is published 4 times annually, in January, April, July, and October, under supervision by the Editorial Board of Japan Prosthodontic Society, which selects all materials submitted for publication. Journal of Prosthodontic Research originated as an official journal of Japan Prosthodontic Society. It has recently developed a long-range plan to become the most prestigious Asian journal of dental research regarding all aspects of oral and occlusal rehabilitation, fixed/removable prosthodontics, oral implantology and applied oral biology and physiology. The Journal will cover all diagnostic and clinical management aspects necessary to reestablish subjective and objective harmonious oral aesthetics and function. The most-targeted topics: 1) Clinical Epidemiology and Prosthodontics 2) Fixed/Removable Prosthodontics 3) Oral Implantology 4) Prosthodontics-Related Biosciences (Regenerative Medicine, Bone Biology, Mechanobiology, Microbiology/Immunology) 5) Oral Physiology and Biomechanics (Masticating and Swallowing Function, Parafunction, e.g., bruxism) 6) Orofacial Pain and Temporomandibular Disorders (TMDs) 7) Adhesive Dentistry / Dental Materials / Aesthetic Dentistry 8) Maxillofacial Prosthodontics and Dysphagia Rehabilitation 9) Digital Dentistry Prosthodontic treatment may become necessary as a result of developmental or acquired disturbances in the orofacial region, of orofacial trauma, or of a variety of dental and oral diseases and orofacial pain conditions. Reviews, Original articles, technical procedure and case reports can be submitted. Letters to the Editor commenting on papers or any aspect of Journal of Prosthodontic Research are welcomed.
期刊最新文献
Accuracy of conventional versus additive cast-fabrication in implant prosthodontics: A systematic review and meta-analysis of in vitro studies Efficacy of initial conservative treatment options for temporomandibular disorders: A network meta-analysis of randomized clinical trials Effectiveness of keratinized mucosa augmentation procedures around dental implants based on risk assessment: A 5-year retrospective cohort study. Evaluation of hypermobile teeth deviation during impression taking in a partially edentulous dental arch: An in vitro study comparing digital and conventional impression techniques. Single-cell analysis of peri-implant gingival tissue to assess implant biocompatibility and immune response.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1