{"title":"The Integral Role of Chloride & With-No-Lysine Kinases in Cell Volume Regulation & Hypertension.","authors":"Ioannis Koulouridis, Efstathios Koulouridis","doi":"10.2147/IJNRD.S417766","DOIUrl":null,"url":null,"abstract":"<p><p>Chloride anions are the most abundant in humans. For many years, it has been believed that chloride is simply a counterion of all other cations, ensuring the electroneutrality of the extracellular space. Recent data suggests that chloride anions possess a broad spectrum of important activities that regulate vital cellular functions. It is now evident that, apart from its contribution to the electroneutrality of the extracellular space, it acts as an osmole and contributes to extracellular and intracellular volume regulation. Its anionic charge also contributes to the generation of cell membrane potential. The most interesting action of chloride anions is their ability to regulate the activity of with-no-lysine kinases, which in turn regulate the activity of sodium chloride and potassium chloride cotransporters and govern the reabsorption of salt and excretion of potassium by nephron epithelia. Chloride anions seem to play a crucial role in cell functions, such as cell volume regulation, sodium reabsorption in the distal nephron, potassium balance, and sodium sensitivity, which lead to hypertension. All of these functions are accomplished on a molecular level via complicated metabolic pathways, many of which remain poorly defined. We attempted to elucidate some of these pathways in light of recent advances in our knowledge, obtained mainly from experimental studies.</p>","PeriodicalId":14181,"journal":{"name":"International Journal of Nephrology and Renovascular Disease","volume":"16 ","pages":"183-196"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/57/61/ijnrd-16-183.PMC10438449.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nephrology and Renovascular Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/IJNRD.S417766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chloride anions are the most abundant in humans. For many years, it has been believed that chloride is simply a counterion of all other cations, ensuring the electroneutrality of the extracellular space. Recent data suggests that chloride anions possess a broad spectrum of important activities that regulate vital cellular functions. It is now evident that, apart from its contribution to the electroneutrality of the extracellular space, it acts as an osmole and contributes to extracellular and intracellular volume regulation. Its anionic charge also contributes to the generation of cell membrane potential. The most interesting action of chloride anions is their ability to regulate the activity of with-no-lysine kinases, which in turn regulate the activity of sodium chloride and potassium chloride cotransporters and govern the reabsorption of salt and excretion of potassium by nephron epithelia. Chloride anions seem to play a crucial role in cell functions, such as cell volume regulation, sodium reabsorption in the distal nephron, potassium balance, and sodium sensitivity, which lead to hypertension. All of these functions are accomplished on a molecular level via complicated metabolic pathways, many of which remain poorly defined. We attempted to elucidate some of these pathways in light of recent advances in our knowledge, obtained mainly from experimental studies.
期刊介绍:
International Journal of Nephrology and Renovascular Disease is an international, peer-reviewed, open-access journal focusing on the pathophysiology of the kidney and vascular supply. Epidemiology, screening, diagnosis, and treatment interventions are covered as well as basic science, biochemical and immunological studies. In particular, emphasis will be given to: -Chronic kidney disease- Complications of renovascular disease- Imaging techniques- Renal hypertension- Renal cancer- Treatment including pharmacological and transplantation- Dialysis and treatment of complications of dialysis and renal disease- Quality of Life- Patient satisfaction and preference- Health economic evaluations. The journal welcomes submitted papers covering original research, basic science, clinical studies, reviews & evaluations, guidelines, expert opinion and commentary, case reports and extended reports. The main focus of the journal will be to publish research and clinical results in humans but preclinical, animal and in vitro studies will be published where they shed light on disease processes and potential new therapies and interventions.