linc00511 Knockdown Inhibits Lung Cancer Progression by Regulating miR-16-5p/MMP11.

IF 1.5 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Eukaryotic Gene Expression Pub Date : 2023-01-01 DOI:10.1615/CritRevEukaryotGeneExpr.2023047789
Zhengyi Song, Jing Luo, Ming Wu, Zelin Zhang
{"title":"linc00511 Knockdown Inhibits Lung Cancer Progression by Regulating miR-16-5p/MMP11.","authors":"Zhengyi Song,&nbsp;Jing Luo,&nbsp;Ming Wu,&nbsp;Zelin Zhang","doi":"10.1615/CritRevEukaryotGeneExpr.2023047789","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer (LC) is a malignant tumor that extremely impairs people. According to numerous studies, long non-coding RNA (lncRNA) was inextricably involved in the advancement of LC. The work aspired to identify linc00511 expression in LC and to dig for the underlying mechanisms linc00511 regulated LC progression. Experimental outcomes revealed that linc00511 was obviously upregulated in LC, and linc00511 knockdown significantly impaired the malignant phenotype of LC cells in vitro. For an in-depth study on the contribution of linc00511 to LC advancement, it was disclosed that miR-16-5p had binding sites to the sequence of linc00511, which also inversely affected linc00511 expression in LC. Further experimental data demonstrated that miR-16-5p directly and negatively targeted matrix metallopeptidase 11 (MMP11). Also, rescue experiments displayed that miR-16-5p inhibition or MMP11 overexpressing offset the suppressive impacts of linc00511 silencing on LC progression. To sum up, our findings indicated that linc00511 performed a crucial role in facilitating LC progression, and mechanistic studies demonstrated that linc00511 aggravated LC progression via targeting the miR-16-5p/MMP11 axis.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 7","pages":"17-30"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023047789","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Lung cancer (LC) is a malignant tumor that extremely impairs people. According to numerous studies, long non-coding RNA (lncRNA) was inextricably involved in the advancement of LC. The work aspired to identify linc00511 expression in LC and to dig for the underlying mechanisms linc00511 regulated LC progression. Experimental outcomes revealed that linc00511 was obviously upregulated in LC, and linc00511 knockdown significantly impaired the malignant phenotype of LC cells in vitro. For an in-depth study on the contribution of linc00511 to LC advancement, it was disclosed that miR-16-5p had binding sites to the sequence of linc00511, which also inversely affected linc00511 expression in LC. Further experimental data demonstrated that miR-16-5p directly and negatively targeted matrix metallopeptidase 11 (MMP11). Also, rescue experiments displayed that miR-16-5p inhibition or MMP11 overexpressing offset the suppressive impacts of linc00511 silencing on LC progression. To sum up, our findings indicated that linc00511 performed a crucial role in facilitating LC progression, and mechanistic studies demonstrated that linc00511 aggravated LC progression via targeting the miR-16-5p/MMP11 axis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
linc00511敲低通过调节miR-16-5p/MMP11抑制肺癌进展
肺癌(LC)是一种严重损害人体健康的恶性肿瘤。大量研究表明,长链非编码RNA (long non-coding RNA, lncRNA)在LC的发展中起着不可分割的作用。这项工作旨在确定linc00511在LC中的表达,并挖掘linc00511调节LC进展的潜在机制。实验结果显示,在LC中,linc00511表达明显上调,且在体外,linc00511敲低显著损害了LC细胞的恶性表型。为了深入研究linc00511对LC进展的贡献,我们发现miR-16-5p与linc00511的序列存在结合位点,这也会负向影响linc00511在LC中的表达。进一步的实验数据表明,miR-16-5p直接负作用于基质金属肽酶11 (MMP11)。此外,挽救实验显示,miR-16-5p抑制或MMP11过表达抵消了linc00511沉默对LC进展的抑制作用。综上所述,我们的研究结果表明,linc00511在促进LC进展中发挥了至关重要的作用,机制研究表明,linc00511通过靶向miR-16-5p/MMP11轴加速LC进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Eukaryotic Gene Expression
Critical Reviews in Eukaryotic Gene Expression 生物-生物工程与应用微生物
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
1 months
期刊介绍: Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource. Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.
期刊最新文献
Exosomal circ_001860 promotes colorectal cancer progression through miR-582-5p/ZEB1 axis Glycosaminoglycans (GAGs) adenogenesis factors: immunohistochemical espression in endometriosis tissues compared to the endometrium Curcumin-carbon dots suppress periodontitis via regulating METTL3/IRE1α signaling DNMT1-dependent DNA methylation of lncRNA FTX inhibits the ferroptosis of hepatocellular carcinoma A Review: The bioactivities and mechanisms of fungus extracts and compounds in colon cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1