David S. White, Mackinsey A. Smith, Baron Chanda and Randall H. Goldsmith*,
{"title":"Strategies for Overcoming the Single-Molecule Concentration Barrier","authors":"David S. White, Mackinsey A. Smith, Baron Chanda and Randall H. Goldsmith*, ","doi":"10.1021/acsmeasuresciau.3c00002","DOIUrl":null,"url":null,"abstract":"<p >Fluorescence-based single-molecule approaches have helped revolutionize our understanding of chemical and biological mechanisms. Unfortunately, these methods are only suitable at low concentrations of fluorescent molecules so that single fluorescent species of interest can be successfully resolved beyond background signal. The application of these techniques has therefore been limited to high-affinity interactions despite most biological and chemical processes occurring at much higher reactant concentrations. Fortunately, recent methodological advances have demonstrated that this concentration barrier can indeed be broken, with techniques reaching concentrations as high as 1 mM. The goal of this Review is to discuss the challenges in performing single-molecule fluorescence techniques at high-concentration, offer applications in both biology and chemistry, and highlight the major milestones that shatter the concentration barrier. We also hope to inspire the widespread use of these techniques so we can begin exploring the new physical phenomena lying beyond this barrier.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"3 4","pages":"239–257"},"PeriodicalIF":4.6000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d0/43/tg3c00002.PMC10436376.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Fluorescence-based single-molecule approaches have helped revolutionize our understanding of chemical and biological mechanisms. Unfortunately, these methods are only suitable at low concentrations of fluorescent molecules so that single fluorescent species of interest can be successfully resolved beyond background signal. The application of these techniques has therefore been limited to high-affinity interactions despite most biological and chemical processes occurring at much higher reactant concentrations. Fortunately, recent methodological advances have demonstrated that this concentration barrier can indeed be broken, with techniques reaching concentrations as high as 1 mM. The goal of this Review is to discuss the challenges in performing single-molecule fluorescence techniques at high-concentration, offer applications in both biology and chemistry, and highlight the major milestones that shatter the concentration barrier. We also hope to inspire the widespread use of these techniques so we can begin exploring the new physical phenomena lying beyond this barrier.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.