Mocravimod, a S1P receptor modulator, increases T cell counts in bone marrow biopsies from patients undergoing allogeneic hematopoietic stem cell transplantation
Simone Dertschnig , Jakob Passweg , Christoph Bucher , Michael Medinger , Alexandar Tzankov
{"title":"Mocravimod, a S1P receptor modulator, increases T cell counts in bone marrow biopsies from patients undergoing allogeneic hematopoietic stem cell transplantation","authors":"Simone Dertschnig , Jakob Passweg , Christoph Bucher , Michael Medinger , Alexandar Tzankov","doi":"10.1016/j.cellimm.2023.104719","DOIUrl":null,"url":null,"abstract":"<div><p>Graft-versus-leukemia (GvL) effects are critical to prevent relapses after allogeneic hematopoietic cell transplantation (allo-HCT). However, the success of allo-HCT is limited by graft-versus-host disease (GvHD). Both, CD4<sup>+</sup> and CD8<sup>+</sup> T cells contribute to GvHD and GvL. The sphingosine-1-phosphate receptor (S1PR) signaling plays a crucial role in lymphocyte trafficking. Mocravimod is an S1PR modulator and its administration leads to blocking lymphocyte egress from lymphoid organs. We hypothesized that this applies to the bone marrow (BM) too, and analyzed BM biopsies from the clinical study with mocravimod (phase I trial in allo-HCT patients; NCT01830010) by immunohistochemical staining for CD3, CD4, CD8, TIA1, FoxP3, PD1, <em>T</em>-Bet, GATA3, and ROR-γt to identify and quantify T cell subsets <em>in situ</em>. Allo-HCT patients without receiving mocravimod were used as controls. BM from 9 patients in the mocravimod group and 10 patients in the control group were examined. CD3<sup>+</sup> T cells were found to accumulate in the BM of mocravimod-treated patients compared to controls, both on day 30 and 90 post-transplant. The effect was stronger for CD4<sup>+</sup> T cells, than CD8<sup>+</sup> T cells, which is in line with data from murine studies showing that CD4<sup>+</sup> T cells are more sensitive to mocravimod treatment than CD8<sup>+</sup> T cells. Clinically-relevant acute GvHD events (grade II-IV) were slightly lower, but comparable to controls when mocravimod was administered. Taken together, data are supportive of mocravimod’s mode of action and bring additional evidence of fewer relapses for allo-HCT patients treated with S1PR modulators.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"388 ","pages":"Article 104719"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874923000588","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Graft-versus-leukemia (GvL) effects are critical to prevent relapses after allogeneic hematopoietic cell transplantation (allo-HCT). However, the success of allo-HCT is limited by graft-versus-host disease (GvHD). Both, CD4+ and CD8+ T cells contribute to GvHD and GvL. The sphingosine-1-phosphate receptor (S1PR) signaling plays a crucial role in lymphocyte trafficking. Mocravimod is an S1PR modulator and its administration leads to blocking lymphocyte egress from lymphoid organs. We hypothesized that this applies to the bone marrow (BM) too, and analyzed BM biopsies from the clinical study with mocravimod (phase I trial in allo-HCT patients; NCT01830010) by immunohistochemical staining for CD3, CD4, CD8, TIA1, FoxP3, PD1, T-Bet, GATA3, and ROR-γt to identify and quantify T cell subsets in situ. Allo-HCT patients without receiving mocravimod were used as controls. BM from 9 patients in the mocravimod group and 10 patients in the control group were examined. CD3+ T cells were found to accumulate in the BM of mocravimod-treated patients compared to controls, both on day 30 and 90 post-transplant. The effect was stronger for CD4+ T cells, than CD8+ T cells, which is in line with data from murine studies showing that CD4+ T cells are more sensitive to mocravimod treatment than CD8+ T cells. Clinically-relevant acute GvHD events (grade II-IV) were slightly lower, but comparable to controls when mocravimod was administered. Taken together, data are supportive of mocravimod’s mode of action and bring additional evidence of fewer relapses for allo-HCT patients treated with S1PR modulators.
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.