{"title":"Optimized bone grafting.","authors":"Richard J Miron","doi":"10.1111/prd.12517","DOIUrl":null,"url":null,"abstract":"<p><p>Bone grafting is routinely performed in periodontology and oral surgery to fill bone voids. While autogenous bone is considered the gold standard because of its regenerative properties, allografts and xenografts have more commonly been utilized owing to their availability as well as their differential regenerative/biomechanical properties. In particular, xenografts are sintered at high temperatures, which allows for their slower degradation and resorption rates and/or nonresorbable features. As a result, clinicians have combined xenografts with other classes of bone grafts (most notably allografts and autografts in various ratios) for procedures requiring better long-term stability, such as contour grafting, sinus elevation procedures, and vertical bone augmentations. This review addresses the regenerative properties of each class of bone grafts and then highlights the importance of understanding each of their biomechanical and regenerative properties for clinical applications, including extraction site management, contour augmentation, sinus grafting, and horizontal and vertical augmentation procedures. Thereafter, an introduction toward the novel production of nonresorbable bone allografts (NRBAs) via high-temperature sintering is presented. These NRBAs not only pose the advantage of being more biocompatible than xenografts owing to their origin (human vs. animal bone) but also display nonresorbable properties similar to those of xenografts. Thus, while packaging allografts with xenografts in premixtures specific to various clinical indications has never been permitted owing to cross-species contamination and FDA/CE requirements, the discovery and production of NRBAs allows premixing with standard allografts in various ratios without regulatory restrictions. Therefore, premixtures of allografts with NRBAs can be produced in various ratios for specific indications (e.g., a 1:1 ratio similar to an allograft/xenograft mixture for sinus grafting) without the need for purchasing separate classes of bone grafts. This optimized form of bone grafting could theoretically provide clinicians more precise ratios without the need to purchase separate bone grafts. This review highlights the future potential for simplified and optimized bone grafting in periodontology and implant dentistry.</p>","PeriodicalId":19736,"journal":{"name":"Periodontology 2000","volume":" ","pages":"143-160"},"PeriodicalIF":17.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodontology 2000","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/prd.12517","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Bone grafting is routinely performed in periodontology and oral surgery to fill bone voids. While autogenous bone is considered the gold standard because of its regenerative properties, allografts and xenografts have more commonly been utilized owing to their availability as well as their differential regenerative/biomechanical properties. In particular, xenografts are sintered at high temperatures, which allows for their slower degradation and resorption rates and/or nonresorbable features. As a result, clinicians have combined xenografts with other classes of bone grafts (most notably allografts and autografts in various ratios) for procedures requiring better long-term stability, such as contour grafting, sinus elevation procedures, and vertical bone augmentations. This review addresses the regenerative properties of each class of bone grafts and then highlights the importance of understanding each of their biomechanical and regenerative properties for clinical applications, including extraction site management, contour augmentation, sinus grafting, and horizontal and vertical augmentation procedures. Thereafter, an introduction toward the novel production of nonresorbable bone allografts (NRBAs) via high-temperature sintering is presented. These NRBAs not only pose the advantage of being more biocompatible than xenografts owing to their origin (human vs. animal bone) but also display nonresorbable properties similar to those of xenografts. Thus, while packaging allografts with xenografts in premixtures specific to various clinical indications has never been permitted owing to cross-species contamination and FDA/CE requirements, the discovery and production of NRBAs allows premixing with standard allografts in various ratios without regulatory restrictions. Therefore, premixtures of allografts with NRBAs can be produced in various ratios for specific indications (e.g., a 1:1 ratio similar to an allograft/xenograft mixture for sinus grafting) without the need for purchasing separate classes of bone grafts. This optimized form of bone grafting could theoretically provide clinicians more precise ratios without the need to purchase separate bone grafts. This review highlights the future potential for simplified and optimized bone grafting in periodontology and implant dentistry.
期刊介绍:
Periodontology 2000 is a series of monographs designed for periodontists and general practitioners interested in periodontics. The editorial board selects significant topics and distinguished scientists and clinicians for each monograph. Serving as a valuable supplement to existing periodontal journals, three monographs are published annually, contributing specialized insights to the field.