Excessive Gestational Weight Gain Alters DNA Methylation and Influences Foetal and Neonatal Body Composition.

IF 2.5 Q3 GENETICS & HEREDITY Epigenomes Pub Date : 2023-08-16 DOI:10.3390/epigenomes7030018
Perla Pizzi Argentato, João Victor da Silva Guerra, Liania Alves Luzia, Ester Silveira Ramos, Mariana Maschietto, Patrícia Helen de Carvalho Rondó
{"title":"Excessive Gestational Weight Gain Alters DNA Methylation and Influences Foetal and Neonatal Body Composition.","authors":"Perla Pizzi Argentato,&nbsp;João Victor da Silva Guerra,&nbsp;Liania Alves Luzia,&nbsp;Ester Silveira Ramos,&nbsp;Mariana Maschietto,&nbsp;Patrícia Helen de Carvalho Rondó","doi":"10.3390/epigenomes7030018","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Changes in body weight are associated with the regulation of DNA methylation (DNAm). In this study, we investigated the associations between maternal gestational weight gain-related DNAm and foetal and neonatal body composition.</p><p><strong>Methods: </strong>Brazilian pregnant women from the Araraquara Cohort Study were followed up during pregnancy, delivery, and after hospital discharge. Women with normal pre-pregnancy BMI were allocated into two groups: adequate gestational weight gain (AGWG, <i>n</i> = 45) and excessive gestational weight gain (EGWG, <i>n</i> = 30). Foetal and neonatal body composition was evaluated via ultrasound and plethysmography, respectively. DNAm was assessed in maternal blood using Illumina Infinium MethylationEPIC BeadChip arrays. Linear regression models were used to explore the associations between DNAm and foetal and neonatal body composition.</p><p><strong>Results: </strong>Maternal weight, GWG, neonatal weight, and fat mass were higher in the EGWG group. Analysis of DNAm identified 46 differentially methylated positions and 11 differentially methylated regions (DMRs) between the EGWG and AGWG groups. Nine human phenotypes were enriched for these 11 DMRs located in 13 genes (<i>EMILIN1</i>, <i>HOXA5</i>, <i>CPT1B</i>, <i>CLDN9</i>, <i>ZFP57</i>, <i>BRCA1</i>, <i>POU5F1</i>, <i>ANKRD33</i>, <i>HLA-B</i>, <i>RANBP17</i>, <i>ZMYND11</i>, <i>DIP2C</i>, <i>TMEM232</i>), highlighting the terms insulin resistance, and hyperglycaemia. Maternal DNAm was associated with foetal total thigh and arm tissues and subcutaneous thigh and arm fat, as well as with neonatal fat mass percentage and fat mass.</p><p><strong>Conclusion: </strong>The methylation pattern in the EGWG group indicated a risk for developing chronic diseases and involvement of maternal DNAm in foetal lean and fat mass and in neonatal fat mass.</p>","PeriodicalId":55768,"journal":{"name":"Epigenomes","volume":"7 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/epigenomes7030018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Changes in body weight are associated with the regulation of DNA methylation (DNAm). In this study, we investigated the associations between maternal gestational weight gain-related DNAm and foetal and neonatal body composition.

Methods: Brazilian pregnant women from the Araraquara Cohort Study were followed up during pregnancy, delivery, and after hospital discharge. Women with normal pre-pregnancy BMI were allocated into two groups: adequate gestational weight gain (AGWG, n = 45) and excessive gestational weight gain (EGWG, n = 30). Foetal and neonatal body composition was evaluated via ultrasound and plethysmography, respectively. DNAm was assessed in maternal blood using Illumina Infinium MethylationEPIC BeadChip arrays. Linear regression models were used to explore the associations between DNAm and foetal and neonatal body composition.

Results: Maternal weight, GWG, neonatal weight, and fat mass were higher in the EGWG group. Analysis of DNAm identified 46 differentially methylated positions and 11 differentially methylated regions (DMRs) between the EGWG and AGWG groups. Nine human phenotypes were enriched for these 11 DMRs located in 13 genes (EMILIN1, HOXA5, CPT1B, CLDN9, ZFP57, BRCA1, POU5F1, ANKRD33, HLA-B, RANBP17, ZMYND11, DIP2C, TMEM232), highlighting the terms insulin resistance, and hyperglycaemia. Maternal DNAm was associated with foetal total thigh and arm tissues and subcutaneous thigh and arm fat, as well as with neonatal fat mass percentage and fat mass.

Conclusion: The methylation pattern in the EGWG group indicated a risk for developing chronic diseases and involvement of maternal DNAm in foetal lean and fat mass and in neonatal fat mass.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
妊娠期体重增加过多会改变DNA甲基化并影响胎儿和新生儿的身体组成。
背景:体重的变化与DNA甲基化(DNAm)的调节有关。在这项研究中,我们调查了母亲妊娠期体重增加相关的dna与胎儿和新生儿身体组成之间的关系。方法:对来自Araraquara队列研究的巴西孕妇在妊娠、分娩和出院后进行随访。将孕前BMI正常的女性分为两组:适当的妊娠增重组(AGWG, n = 45)和过度的妊娠增重组(EGWG, n = 30)。分别通过超声和体积脉搏图评估胎儿和新生儿的身体组成。使用Illumina Infinium MethylationEPIC珠片阵列检测母体血液中的dna。采用线性回归模型探讨脱氧核糖核酸与胎儿和新生儿体成分之间的关系。结果:EGWG组产妇体重、GWG、新生儿体重、脂肪量均高于EGWG组。DNAm分析确定了EGWG和AGWG组之间46个差异甲基化位置和11个差异甲基化区域(DMRs)。这11种DMRs在13个基因(EMILIN1、HOXA5、CPT1B、CLDN9、ZFP57、BRCA1、POU5F1、ANKRD33、HLA-B、RANBP17、ZMYND11、DIP2C、TMEM232)中富集了9种人类表型,突出了胰岛素抵抗和高血糖。母体dna与胎儿总大腿和手臂组织、大腿和手臂皮下脂肪以及新生儿脂肪质量百分比和脂肪质量有关。结论:EGWG组的甲基化模式表明,母体脱氧核糖核酸与胎儿瘦脂肪量和新生儿脂肪量有关,具有发生慢性疾病的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenomes
Epigenomes GENETICS & HEREDITY-
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
11 weeks
期刊最新文献
Environmental Factor Index (EFI): A Novel Approach to Measure the Strength of Environmental Influence on DNA Methylation in Identical Twins. Age-Dependent DNA Methylation Variability on the X-Chromosome in Male and Female Twins. Histone Modification Pathways Suppressing Cryptic Transcription. Epigenetic Landscape of DNA Methylation in Pancreatic Ductal Adenocarcinoma. Transcription Factors Are Involved in Wizened Bud Occurrence During the Growing Season in the Pyrus pyrifolia Cultivar 'Sucui 1'.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1