Filipe Marques, Wouter van der Wijngaart, Niclas Roxhed
{"title":"Absorbable cyst brushes","authors":"Filipe Marques, Wouter van der Wijngaart, Niclas Roxhed","doi":"10.1007/s10544-023-00674-y","DOIUrl":null,"url":null,"abstract":"<div><p>Cytobrushes are used for low-invasive sample collection and screening in multiple diseases, with a significant impact on early detection, prevention, and diagnosis. This study focuses on improving the safety of cell brushing in hard-to-reach locations by exploring brush construction from absorbable materials. We investigated the efficacy of loop brushes made of absorbable suture wires of Chirlac, Chirasorb, Monocryl, PDS II, Vicryl Rapid, Glycolon, and Catgut during their operation in conjunction with fine-needle aspiration in an artificial cyst model. PDS II brushes demonstrated the highest efficiency, while Monocryl and Catgut also provided a significant brushing effect. Efficient brushes portrayed higher flexural rigidity than their counterparts, and their efficiency was inversely proportional to their plastic deformation by the needle. Our results open avenues for safer cell biopsies in hard-to-reach locations by utilizing brushes composed of absorbable materials.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00674-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cytobrushes are used for low-invasive sample collection and screening in multiple diseases, with a significant impact on early detection, prevention, and diagnosis. This study focuses on improving the safety of cell brushing in hard-to-reach locations by exploring brush construction from absorbable materials. We investigated the efficacy of loop brushes made of absorbable suture wires of Chirlac, Chirasorb, Monocryl, PDS II, Vicryl Rapid, Glycolon, and Catgut during their operation in conjunction with fine-needle aspiration in an artificial cyst model. PDS II brushes demonstrated the highest efficiency, while Monocryl and Catgut also provided a significant brushing effect. Efficient brushes portrayed higher flexural rigidity than their counterparts, and their efficiency was inversely proportional to their plastic deformation by the needle. Our results open avenues for safer cell biopsies in hard-to-reach locations by utilizing brushes composed of absorbable materials.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.