Genetic and lipidomic analyses reveal the key role of lipid metabolism for cold tolerance in maize.

Lei Gao, Haifang Jiang, Minze Li, Danfeng Wang, Hongtao Xiang, Rong Zeng, Limei Chen, Xiaoyan Zhang, Jianru Zuo, Shuhua Yang, Yiting Shi
{"title":"Genetic and lipidomic analyses reveal the key role of lipid metabolism for cold tolerance in maize.","authors":"Lei Gao, Haifang Jiang, Minze Li, Danfeng Wang, Hongtao Xiang, Rong Zeng, Limei Chen, Xiaoyan Zhang, Jianru Zuo, Shuhua Yang, Yiting Shi","doi":"10.1016/j.jgg.2023.07.004","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid remodeling is crucial for cold tolerance in plants. However, the precise alternations of lipidomics during cold responses remain elusive, especially in maize (Zea mays L.). In addition, the key genes responsible for cold tolerance in maize lipid metabolism have not been identified. Here, we integrate lipidomic, transcriptomic, and genetic analysis to determine the profile of lipid remodeling caused by cold stress. We find that the homeostasis of cellular lipid metabolism is essential for maintaining cold tolerance of maize. Also, we detect 210 lipid species belonging to 13 major classes, covering phospholipids, glycerides, glycolipids, and free fatty acids. Various lipid metabolites undergo specific and selective alterations in response to cold stress, especially mono-/di-unsaturated lysophosphatidic acid, lysophosphatidylcholine, phosphatidylcholine, and phosphatidylinositol, as well as polyunsaturated phosphatidic acid, monogalactosyldiacylglycerol, diacylglycerol, and triacylglycerol. In addition, we identify a subset of key enzymes, including ketoacyl-acyl-carrier protein synthase II (KAS II), acyl-carrier protein 2 (ACP2), male sterility33 (Ms33), and stearoyl-acyl-carrier protein desaturase 2 (SAD2) involved in glycerolipid biosynthetic pathways are positive regulators of maize cold tolerance. These results reveal a comprehensive lipidomic profile during the cold response of maize and provide genetic resources for enhancing cold tolerance in crops.</p>","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":"326-337"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of genetics and genomics = Yi chuan xue bao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jgg.2023.07.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid remodeling is crucial for cold tolerance in plants. However, the precise alternations of lipidomics during cold responses remain elusive, especially in maize (Zea mays L.). In addition, the key genes responsible for cold tolerance in maize lipid metabolism have not been identified. Here, we integrate lipidomic, transcriptomic, and genetic analysis to determine the profile of lipid remodeling caused by cold stress. We find that the homeostasis of cellular lipid metabolism is essential for maintaining cold tolerance of maize. Also, we detect 210 lipid species belonging to 13 major classes, covering phospholipids, glycerides, glycolipids, and free fatty acids. Various lipid metabolites undergo specific and selective alterations in response to cold stress, especially mono-/di-unsaturated lysophosphatidic acid, lysophosphatidylcholine, phosphatidylcholine, and phosphatidylinositol, as well as polyunsaturated phosphatidic acid, monogalactosyldiacylglycerol, diacylglycerol, and triacylglycerol. In addition, we identify a subset of key enzymes, including ketoacyl-acyl-carrier protein synthase II (KAS II), acyl-carrier protein 2 (ACP2), male sterility33 (Ms33), and stearoyl-acyl-carrier protein desaturase 2 (SAD2) involved in glycerolipid biosynthetic pathways are positive regulators of maize cold tolerance. These results reveal a comprehensive lipidomic profile during the cold response of maize and provide genetic resources for enhancing cold tolerance in crops.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传和脂质体分析揭示了脂质代谢对玉米耐寒性的关键作用。
脂质重塑对植物的耐寒性至关重要。然而,脂质组学在寒冷反应过程中的精确变化仍然难以捉摸,尤其是在玉米(Zea mays L.)中。此外,玉米脂质代谢中负责耐寒的关键基因也尚未确定。在这里,我们整合了脂质组学、转录物组学和遗传学分析,以确定冷胁迫引起的脂质重塑概况。我们发现,细胞脂质代谢的平衡对维持玉米的耐寒性至关重要。此外,我们还检测到属于 13 大类的 210 种脂质,包括磷脂、甘油酯、糖脂和游离脂肪酸。各种脂质代谢物在应对冷胁迫时会发生特异性和选择性变化,尤其是单/双不饱和溶血磷脂酸、溶血磷脂酰胆碱、磷脂酰胆碱和磷脂酰肌醇,以及多不饱和磷脂酸、单半乳糖二酰甘油、二酰甘油和三酰甘油。此外,我们还发现了参与甘油酯生物合成途径的一些关键酶,包括酮酰-酰-载体蛋白合成酶 II(KAS II)、酰-载体蛋白 2(ACP2)、雄性不育33(Ms33)和硬脂酰-酰-载体蛋白去饱和酶 2(SAD2),它们是玉米耐寒性的正向调节因子。这些结果揭示了玉米抗寒过程中全面的脂质体特征,为提高作物的抗寒性提供了遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
H3K36me3 and H2A.Z coordinately modulate flowering time in Arabidopsis. Translation machinery: the basis of translational control. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. S-acylation of YKT61 modulates its unconventional participation in the formation of SNARE complexes in Arabidopsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1