Binding Affinity Studies of Nicotinamide N-methyltransferase and Ligands by Saturation Transfer Difference NMR.

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein and Peptide Letters Pub Date : 2023-01-01 DOI:10.2174/0929866530666230824153356
Tingting Fang, Jianyu Zhang
{"title":"Binding Affinity Studies of Nicotinamide N-methyltransferase and Ligands by Saturation Transfer Difference NMR.","authors":"Tingting Fang, Jianyu Zhang","doi":"10.2174/0929866530666230824153356","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide with S-adenosine-L-methionine (SAM) as the methyl donor. Abnormal expression of NNMT is associated with many diseases (such as multiple cancers and metabolic and liver diseases), making NNMT a potential therapeutic target. Limited studies concerning the enzymesubstrate/ inhibitor interactions could be found to fully understand the detailed reaction mechanism.</p><p><strong>Methods: </strong>The binding affinity and ligand binding epitopes of nicotinamide or SAH for binding NNMT and its mutants were determined using saturated transfer difference (STD) nuclear magnetic resonance (NMR) techniques combined with site-directed mutagenesis.</p><p><strong>Results: </strong>The average dissociation constant of WT NNMT with nicotinamide and S-adenosine homocysteine (SAH) was 5.5 ± 0.9 mM and 1.2 ± 0.3 mM, respectively, while the mutants Y20F and Y20G with nicotinamide were up to nearly 4 times and 20 times that of WT and with SAH nearly 2 times and 5 times that of WT. The data suggested that WT had the highest binding affinity for nicotinamide or SAH, followed by Y20F and Y20G, which was consistent with its catalytic activity.</p><p><strong>Conclusion: </strong>The binding affinity of nicotinamide and SAH to NNMT and its mutants were obtained by STD NMR in this study. It was found that nicotinamide and SAH bind to WT in a particular orientation, and Y20 is critical for their binding orientation and affinity to NNMT.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0929866530666230824153356","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide with S-adenosine-L-methionine (SAM) as the methyl donor. Abnormal expression of NNMT is associated with many diseases (such as multiple cancers and metabolic and liver diseases), making NNMT a potential therapeutic target. Limited studies concerning the enzymesubstrate/ inhibitor interactions could be found to fully understand the detailed reaction mechanism.

Methods: The binding affinity and ligand binding epitopes of nicotinamide or SAH for binding NNMT and its mutants were determined using saturated transfer difference (STD) nuclear magnetic resonance (NMR) techniques combined with site-directed mutagenesis.

Results: The average dissociation constant of WT NNMT with nicotinamide and S-adenosine homocysteine (SAH) was 5.5 ± 0.9 mM and 1.2 ± 0.3 mM, respectively, while the mutants Y20F and Y20G with nicotinamide were up to nearly 4 times and 20 times that of WT and with SAH nearly 2 times and 5 times that of WT. The data suggested that WT had the highest binding affinity for nicotinamide or SAH, followed by Y20F and Y20G, which was consistent with its catalytic activity.

Conclusion: The binding affinity of nicotinamide and SAH to NNMT and its mutants were obtained by STD NMR in this study. It was found that nicotinamide and SAH bind to WT in a particular orientation, and Y20 is critical for their binding orientation and affinity to NNMT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用饱和转移差核磁共振研究烟酰胺n -甲基转移酶与配体的结合亲和力。
烟酰胺n -甲基转移酶(NNMT)以s -腺苷- l -蛋氨酸(SAM)为甲基供体催化烟酰胺n -甲基化。NNMT的异常表达与许多疾病(如多种癌症、代谢性疾病和肝脏疾病)有关,使NNMT成为潜在的治疗靶点。对酶-底物/抑制剂相互作用的研究有限,无法充分了解其详细的反应机理。方法:采用饱和转移差(STD)核磁共振(NMR)结合定点诱变技术测定烟酰胺或SAH对NNMT及其突变体的结合亲和力和配体结合表位。结果:平均离解常数WT NNMT烟酰胺和S-adenosine同型半胱氨酸(SAH)是5.5±0.9毫米和1.2±0.3毫米,分别在突变体Y20F Y20G和烟酰胺的近4倍,20倍的WT与SAH的2倍和5倍WT。数据表明,WT亲和力为烟酰胺或最高长官,其次是Y20F和Y20G,与其催化活性一致。结论:本研究通过STD NMR获得了烟酰胺和SAH与NNMT及其突变体的结合亲和力。研究发现,烟酰胺和SAH以特定的取向与WT结合,而Y20对它们的结合取向和与NNMT的亲和力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein and Peptide Letters
Protein and Peptide Letters 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
98
审稿时长
2 months
期刊介绍: Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations. Protein & Peptide Letters focuses on: Structure Studies Advances in Recombinant Expression Drug Design Chemical Synthesis Function Pharmacology Enzymology Conformational Analysis Immunology Biotechnology Protein Engineering Protein Folding Sequencing Molecular Recognition Purification and Analysis
期刊最新文献
Immunoproteomics: A Review of Techniques, Applications, and Advancements. SGSM2 in Uveal Melanoma: Implications for Survival, Immune Infiltration, and Drug Sensitivity. Exploring the Regulatory Interaction of Differentially Expressed Proteins in Cleft Palate Induced by Retinoic Acid. Immunoproteomics: Approach to Diagnostic and Vaccine Development. Characterization of Luciferase from Photorhabdus kayaii and its Application for In vivo Imaging Studies in Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1