{"title":"Efficient Federated Kinship Relationship Identification.","authors":"Xinyue Wang, Leonard Dervishi, Wentao Li, Xiaoqian Jiang, Erman Ayday, Jaideep Vaidya","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Kinship relationship estimation plays a significant role in today's genome studies. Since genetic data are mostly stored and protected in different silos, retrieving the desirable kinship relationships across federated data warehouses is a non-trivial problem. The ability to identify and connect related individuals is important for both research and clinical applications. In this work, we propose a new privacy-preserving kinship relationship estimation framework: Incremental Update Kinship Identification (INK). The proposed framework includes three key components that allow us to control the balance between privacy and accuracy (of kinship estimation): an incremental process coupled with the use of auxiliary information and informative scores. Our empirical evaluation shows that INK can achieve higher kinship identification correctness while exposing fewer genetic markers.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283133/pdf/2171.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Kinship relationship estimation plays a significant role in today's genome studies. Since genetic data are mostly stored and protected in different silos, retrieving the desirable kinship relationships across federated data warehouses is a non-trivial problem. The ability to identify and connect related individuals is important for both research and clinical applications. In this work, we propose a new privacy-preserving kinship relationship estimation framework: Incremental Update Kinship Identification (INK). The proposed framework includes three key components that allow us to control the balance between privacy and accuracy (of kinship estimation): an incremental process coupled with the use of auxiliary information and informative scores. Our empirical evaluation shows that INK can achieve higher kinship identification correctness while exposing fewer genetic markers.