{"title":"Aurantio-obtusin Alleviates Dry Eye Disease by Targeting NF-κB/NLRP3 Signaling in Rodent Models.","authors":"Dan Zhu, Na Zheng, Kebin Deng, Liangchang Li","doi":"10.1007/s10528-023-10471-0","DOIUrl":null,"url":null,"abstract":"<p><p>Dry eye disease (DED) is a common inflammatory ocular surface disorder, seriously affecting the quality of life of patients. Aurantio-obtusin (AO) is a bioactive anthraquinone compound isolated from Semen Cassiae which has multiple pharmacological activities. Nonetheless, the specific function of AO in DED is unclarified. In this study, a rodent DED model was established by benzalkonium chloride (BAC) induction, followed by topical administration of AO. The results showed that topical application of AO increased tear production, mitigated ocular surface disruption and maintained the number of goblet cells in BAC-induced DED rats (p˂0.05). ELISA revealed that AO treatment significantly (p˂0.001) reduced the production of proinflammatory cytokines and chemokines in the conjunctiva and cornea of BAC-induced DED rats. Immunohistochemical staining and western blotting showed that AO treatment suppressed the expression levels of NLR family pyrin domain containing 3 (NLRP3) inflammasome-related proteins, and inhibited activation of nuclear factor kappa B (NF-κB) signaling pathway in rat conjunctiva and cornea (p˂0.001). In conclusion, AO treatment alleviates BAC-induced DED in rats by inhibiting NF-κB/NLRP3 inflammasome signaling pathway.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"1-14"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-023-10471-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dry eye disease (DED) is a common inflammatory ocular surface disorder, seriously affecting the quality of life of patients. Aurantio-obtusin (AO) is a bioactive anthraquinone compound isolated from Semen Cassiae which has multiple pharmacological activities. Nonetheless, the specific function of AO in DED is unclarified. In this study, a rodent DED model was established by benzalkonium chloride (BAC) induction, followed by topical administration of AO. The results showed that topical application of AO increased tear production, mitigated ocular surface disruption and maintained the number of goblet cells in BAC-induced DED rats (p˂0.05). ELISA revealed that AO treatment significantly (p˂0.001) reduced the production of proinflammatory cytokines and chemokines in the conjunctiva and cornea of BAC-induced DED rats. Immunohistochemical staining and western blotting showed that AO treatment suppressed the expression levels of NLR family pyrin domain containing 3 (NLRP3) inflammasome-related proteins, and inhibited activation of nuclear factor kappa B (NF-κB) signaling pathway in rat conjunctiva and cornea (p˂0.001). In conclusion, AO treatment alleviates BAC-induced DED in rats by inhibiting NF-κB/NLRP3 inflammasome signaling pathway.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.