{"title":"Neuroprotective Strategies for Nonarteritic Anterior Ischemic Optic Neuropathy: A Systematic Review.","authors":"Brigitta Marcia Budihardja, Erika Anggraini, Rianti Wulandari Pratiwi, Anya Dewi Nastiti, Syntia Nusanti","doi":"10.3341/kjo.2022.0166","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Nonarteritic anterior ischemic optic neuropathy (NAION) is the second most common form of optic neuropathy. Most patients show no improvement over time. Until now, there is still no definitive therapy for NAION. The available literatures on the possible treatment of NAION are quite diverse and controversial. Neuroprotection strategies have been suggested as one of the potential treatments for NAION. This review aims to critically evaluate the literature on neuroprotective strategy for NAION.</p><p><strong>Methods: </strong>This report was written in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. We performed a systematic literature search in Pubmed, Science Direct, Proquest, and Cochrane databases. Only neuroprotective agents that directly work in protecting neurons were included. The outcome of interest in this review is retinal ganglion cell density and apoptosis for animal studies and retinal nerve fiber layer thickness for human studies.</p><p><strong>Results: </strong>The systematic search identified 591 studies of which 24 met the eligibility criteria, including 21 animal studies and three human studies. Only a few of the studies evaluated the same treatments, showing how diverse neuroprotector treatments are currently being evaluated as NAION treatment. From 21 animal studies, 14 studies showed significantly higher retinal ganglion cell density (1.49- to 2.81-fold) with neuroprotective treatment compared to control group. Two of three human studies in this review had also found a beneficial effect of preserving retinal nerve fiber layer thickness in NAION patients.</p><p><strong>Conclusions: </strong>This review suggests the potential of neuroprotection as a viable option in the quest for an effective treatment strategy for NAION. Further studies, particularly clinical studies, are necessary to establish its efficacy in NAION patients.</p>","PeriodicalId":17883,"journal":{"name":"Korean Journal of Ophthalmology : KJO","volume":"37 4","pages":"328-339"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1a/dc/kjo-2022-0166.PMC10427903.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Ophthalmology : KJO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3341/kjo.2022.0166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose: Nonarteritic anterior ischemic optic neuropathy (NAION) is the second most common form of optic neuropathy. Most patients show no improvement over time. Until now, there is still no definitive therapy for NAION. The available literatures on the possible treatment of NAION are quite diverse and controversial. Neuroprotection strategies have been suggested as one of the potential treatments for NAION. This review aims to critically evaluate the literature on neuroprotective strategy for NAION.
Methods: This report was written in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. We performed a systematic literature search in Pubmed, Science Direct, Proquest, and Cochrane databases. Only neuroprotective agents that directly work in protecting neurons were included. The outcome of interest in this review is retinal ganglion cell density and apoptosis for animal studies and retinal nerve fiber layer thickness for human studies.
Results: The systematic search identified 591 studies of which 24 met the eligibility criteria, including 21 animal studies and three human studies. Only a few of the studies evaluated the same treatments, showing how diverse neuroprotector treatments are currently being evaluated as NAION treatment. From 21 animal studies, 14 studies showed significantly higher retinal ganglion cell density (1.49- to 2.81-fold) with neuroprotective treatment compared to control group. Two of three human studies in this review had also found a beneficial effect of preserving retinal nerve fiber layer thickness in NAION patients.
Conclusions: This review suggests the potential of neuroprotection as a viable option in the quest for an effective treatment strategy for NAION. Further studies, particularly clinical studies, are necessary to establish its efficacy in NAION patients.