Post-translational modifications of lysine-specific demethylase 1

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et Biophysica Acta-Gene Regulatory Mechanisms Pub Date : 2023-08-10 DOI:10.1016/j.bbagrm.2023.194968
Dongha Kim , Hye Jin Nam , Sung Hee Baek
{"title":"Post-translational modifications of lysine-specific demethylase 1","authors":"Dongha Kim ,&nbsp;Hye Jin Nam ,&nbsp;Sung Hee Baek","doi":"10.1016/j.bbagrm.2023.194968","DOIUrl":null,"url":null,"abstract":"<div><p>Lysine-specific demethylase 1 (LSD1) is crucial for regulating gene expression by catalyzing the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4) and lysine 9 (H3K9) and non-histone proteins through the amine oxidase activity with FAD<sup>+</sup> as a cofactor. It interacts with several protein partners, which potentially contributes to its diverse substrate specificity. Given its pivotal role in numerous physiological and pathological conditions, the function of LSD1 is closely regulated by diverse post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation. In this review, we aim to provide a comprehensive understanding of the regulation and function of LSD1 following various PTMs. Specifically, we will focus on the impact of PTMs on LSD1 function in physiological and pathological contexts and discuss the potential therapeutic implications of targeting these modifications for the treatment of human diseases.</p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194968"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939923000639","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lysine-specific demethylase 1 (LSD1) is crucial for regulating gene expression by catalyzing the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4) and lysine 9 (H3K9) and non-histone proteins through the amine oxidase activity with FAD+ as a cofactor. It interacts with several protein partners, which potentially contributes to its diverse substrate specificity. Given its pivotal role in numerous physiological and pathological conditions, the function of LSD1 is closely regulated by diverse post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation. In this review, we aim to provide a comprehensive understanding of the regulation and function of LSD1 following various PTMs. Specifically, we will focus on the impact of PTMs on LSD1 function in physiological and pathological contexts and discuss the potential therapeutic implications of targeting these modifications for the treatment of human diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
赖氨酸特异性去甲基酶1的翻译后修饰
赖氨酸特异性去甲基酶1(LSD1)通过以FAD+为辅因子的胺氧化酶活性催化单甲基化和二甲基化组蛋白H3赖氨酸4(H3K4)、赖氨酸9(H3K9)和非组蛋白的去甲基化,对调节基因表达至关重要。它与几个蛋白质伴侣相互作用,这可能有助于其多样化的底物特异性。鉴于其在许多生理和病理条件下的关键作用,LSD1的功能受到各种翻译后修饰(PTM)的密切调节,包括磷酸化、泛素化、甲基化和乙酰化。在这篇综述中,我们旨在全面了解LSD1在各种PTM之后的调节和功能。具体而言,我们将关注PTMs在生理和病理背景下对LSD1功能的影响,并讨论靶向这些修饰对治疗人类疾病的潜在治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
2.10%
发文量
63
审稿时长
44 days
期刊介绍: BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.
期刊最新文献
Transcriptional responses of three slc39a/zip members (zip4, zip5 and zip9) and their roles in Zn metabolism in grass carp (Ctenopharyngodon idella). Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA. Competing endogenous RNAs network and therapeutic implications: New horizons in disease research. Editorial Board Bioinformatic meta-analysis of transcriptomics of developing Drosophila muscles identifies temporal regulatory transcription factors including a Notch effector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1