{"title":"NBR1-mediated selective chloroplast autophagy is important to plant stress tolerance.","authors":"Hui Zhang, Qihua Ling","doi":"10.1080/15548627.2023.2251324","DOIUrl":null,"url":null,"abstract":"<p><p>Macroautophagy/autophagy is a conserved process in eukaryotes responsible for degrading unwanted or damaged macromolecules and organelles through the lysosome or vacuole for recycling and reutilization. Our previous studies revealed the degradation of chloroplast proteins through a pathway dependent on the ubiquitin proteasome system, known as CHLORAD. Recently, we demonstrated a role for selective autophagy in regulating chloroplast protein import and enhancing stress tolerance in plants. Specifically, we found that K63-ubiquitination of TOC components at the chloroplast outer envelope membrane is recognized by the selective autophagy adaptor NBR1, leading to the degradation of TOC proteins under UV-B irradiation and heat stresses in Arabidopsis. This process was shown to control chloroplast protein import and influence photosynthetic activity. Based on our results, we have, for the first time, demonstrated that selective autophagy plays a vital role in chloroplast protein degradation, specifically in response to certain abiotic stresses.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"205-206"},"PeriodicalIF":14.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15548627.2023.2251324","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macroautophagy/autophagy is a conserved process in eukaryotes responsible for degrading unwanted or damaged macromolecules and organelles through the lysosome or vacuole for recycling and reutilization. Our previous studies revealed the degradation of chloroplast proteins through a pathway dependent on the ubiquitin proteasome system, known as CHLORAD. Recently, we demonstrated a role for selective autophagy in regulating chloroplast protein import and enhancing stress tolerance in plants. Specifically, we found that K63-ubiquitination of TOC components at the chloroplast outer envelope membrane is recognized by the selective autophagy adaptor NBR1, leading to the degradation of TOC proteins under UV-B irradiation and heat stresses in Arabidopsis. This process was shown to control chloroplast protein import and influence photosynthetic activity. Based on our results, we have, for the first time, demonstrated that selective autophagy plays a vital role in chloroplast protein degradation, specifically in response to certain abiotic stresses.
期刊介绍:
Autophagy is a peer-reviewed journal that publishes research on autophagic processes, including the lysosome/vacuole dependent degradation of intracellular material. It aims to be the premier journal in the field and covers various connections between autophagy and human health and disease, such as cancer, neurodegeneration, aging, diabetes, myopathies, and heart disease. Autophagy is interested in all experimental systems, from yeast to human. Suggestions for specialized topics are welcome.
The journal accepts the following types of articles: Original research, Reviews, Technical papers, Brief Reports, Addenda, Letters to the Editor, Commentaries and Views, and Articles on science and art.
Autophagy is abstracted/indexed in Adis International Ltd (Reactions Weekly), EBSCOhost (Biological Abstracts), Elsevier BV (EMBASE and Scopus), PubMed, Biological Abstracts, Science Citation Index Expanded, Web of Science, and MEDLINE.