Zhuoqing Chang, Shubo Liu, Run Qiu, Song Song, Zhaohui Cai, Guoqing Tu
{"title":"Time-aware neural ordinary differential equations for incomplete time series modeling.","authors":"Zhuoqing Chang, Shubo Liu, Run Qiu, Song Song, Zhaohui Cai, Guoqing Tu","doi":"10.1007/s11227-023-05327-8","DOIUrl":null,"url":null,"abstract":"<p><p>Internet of Things realizes the ubiquitous connection of all things, generating countless time-tagged data called time series. However, real-world time series are often plagued with missing values on account of noise or malfunctioning sensors. Existing methods for modeling such incomplete time series typically involve preprocessing steps, such as deletion or missing data imputation using statistical learning or machine learning methods. Unfortunately, these methods unavoidable destroy time information and bring error accumulation to the subsequent model. To this end, this paper introduces a novel continuous neural network architecture, named Time-aware Neural-Ordinary Differential Equations (TN-ODE), for incomplete time data modeling. The proposed method not only supports imputation missing values at arbitrary time points, but also enables multi-step prediction at desired time points. Specifically, TN-ODE employs a time-aware Long Short-Term Memory as an encoder, which effectively learns the posterior distribution from partial observed data. Additionally, the derivative of latent states is parameterized with a fully connected network, thereby enabling continuous-time latent dynamics generation. The proposed TN-ODE model is evaluated on both real-world and synthetic incomplete time-series datasets by conducting data interpolation and extrapolation tasks as well as classification task. Extensive experiments show the TN-ODE model outperforms baseline methods in terms of Mean Square Error for imputation and prediction tasks, as well as accuracy in downstream classification task.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":" ","pages":"1-29"},"PeriodicalIF":2.5000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192786/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05327-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
Internet of Things realizes the ubiquitous connection of all things, generating countless time-tagged data called time series. However, real-world time series are often plagued with missing values on account of noise or malfunctioning sensors. Existing methods for modeling such incomplete time series typically involve preprocessing steps, such as deletion or missing data imputation using statistical learning or machine learning methods. Unfortunately, these methods unavoidable destroy time information and bring error accumulation to the subsequent model. To this end, this paper introduces a novel continuous neural network architecture, named Time-aware Neural-Ordinary Differential Equations (TN-ODE), for incomplete time data modeling. The proposed method not only supports imputation missing values at arbitrary time points, but also enables multi-step prediction at desired time points. Specifically, TN-ODE employs a time-aware Long Short-Term Memory as an encoder, which effectively learns the posterior distribution from partial observed data. Additionally, the derivative of latent states is parameterized with a fully connected network, thereby enabling continuous-time latent dynamics generation. The proposed TN-ODE model is evaluated on both real-world and synthetic incomplete time-series datasets by conducting data interpolation and extrapolation tasks as well as classification task. Extensive experiments show the TN-ODE model outperforms baseline methods in terms of Mean Square Error for imputation and prediction tasks, as well as accuracy in downstream classification task.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.