{"title":"Performance Evaluation of Learning Models for the Prognosis of COVID-19.","authors":"Baijnath Kaushik, Akshma Chadha, Reya Sharma","doi":"10.1007/s00354-023-00220-7","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 has developed as a worldwide pandemic that needs ways to be detected. It is a communicable disease and is spreading widely. Deep learning and transfer learning methods have achieved promising results and performance for the detection of COVID-19. Therefore, a hybrid deep transfer learning technique has been proposed in this study to detect COVID-19 from chest X-ray images. The work done previously contains a very less number of COVID-19 X-ray images. However, the dataset taken in this work is balanced with a total of 28,384 X-ray images, having 14,192 images in the COVID-19 class and 14,192 images in the normal class. Experimental evaluations were conducted using a chest X-ray dataset to test the efficacy of the proposed hybrid technique. The results clearly reveal that the proposed hybrid technique attains better performance in comparison to the existing contemporary transfer learning and deep learning techniques.</p>","PeriodicalId":54726,"journal":{"name":"New Generation Computing","volume":" ","pages":"1-19"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Generation Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00354-023-00220-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
COVID-19 has developed as a worldwide pandemic that needs ways to be detected. It is a communicable disease and is spreading widely. Deep learning and transfer learning methods have achieved promising results and performance for the detection of COVID-19. Therefore, a hybrid deep transfer learning technique has been proposed in this study to detect COVID-19 from chest X-ray images. The work done previously contains a very less number of COVID-19 X-ray images. However, the dataset taken in this work is balanced with a total of 28,384 X-ray images, having 14,192 images in the COVID-19 class and 14,192 images in the normal class. Experimental evaluations were conducted using a chest X-ray dataset to test the efficacy of the proposed hybrid technique. The results clearly reveal that the proposed hybrid technique attains better performance in comparison to the existing contemporary transfer learning and deep learning techniques.
期刊介绍:
The journal is specially intended to support the development of new computational and cognitive paradigms stemming from the cross-fertilization of various research fields. These fields include, but are not limited to, programming (logic, constraint, functional, object-oriented), distributed/parallel computing, knowledge-based systems, agent-oriented systems, and cognitive aspects of human embodied knowledge. It also encourages theoretical and/or practical papers concerning all types of learning, knowledge discovery, evolutionary mechanisms, human cognition and learning, and emergent systems that can lead to key technologies enabling us to build more complex and intelligent systems. The editorial board hopes that New Generation Computing will work as a catalyst among active researchers with broad interests by ensuring a smooth publication process.