Jonas Anderegg, Radek Zenkl, Achim Walter, Andreas Hund, Bruce A McDonald
{"title":"Combining High-Resolution Imaging, Deep Learning, and Dynamic Modeling to Separate Disease and Senescence in Wheat Canopies.","authors":"Jonas Anderegg, Radek Zenkl, Achim Walter, Andreas Hund, Bruce A McDonald","doi":"10.34133/plantphenomics.0053","DOIUrl":null,"url":null,"abstract":"<p><p>Maintenance of sufficiently healthy green leaf area after anthesis is key to ensuring an adequate assimilate supply for grain filling. Tightly regulated age-related physiological senescence and various biotic and abiotic stressors drive overall greenness decay dynamics under field conditions. Besides direct effects on green leaf area in terms of leaf damage, stressors often anticipate or accelerate physiological senescence, which may multiply their negative impact on grain filling. Here, we present an image processing methodology that enables the monitoring of chlorosis and necrosis separately for ears and shoots (stems + leaves) based on deep learning models for semantic segmentation and color properties of vegetation. A vegetation segmentation model was trained using semisynthetic training data generated using image composition and generative adversarial neural networks, which greatly reduced the risk of annotation uncertainties and annotation effort. Application of the models to image time series revealed temporal patterns of greenness decay as well as the relative contributions of chlorosis and necrosis. Image-based estimation of greenness decay dynamics was highly correlated with scoring-based estimations (<i>r</i> ≈ 0.9). Contrasting patterns were observed for plots with different levels of foliar diseases, particularly septoria tritici blotch. Our results suggest that tracking the chlorotic and necrotic fractions separately may enable (a) a separate quantification of the contribution of biotic stress and physiological senescence on overall green leaf area dynamics and (b) investigation of interactions between biotic stress and physiological senescence. The high-throughput nature of our methodology paves the way to conducting genetic studies of disease resistance and tolerance.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0053"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287056/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0053","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
Maintenance of sufficiently healthy green leaf area after anthesis is key to ensuring an adequate assimilate supply for grain filling. Tightly regulated age-related physiological senescence and various biotic and abiotic stressors drive overall greenness decay dynamics under field conditions. Besides direct effects on green leaf area in terms of leaf damage, stressors often anticipate or accelerate physiological senescence, which may multiply their negative impact on grain filling. Here, we present an image processing methodology that enables the monitoring of chlorosis and necrosis separately for ears and shoots (stems + leaves) based on deep learning models for semantic segmentation and color properties of vegetation. A vegetation segmentation model was trained using semisynthetic training data generated using image composition and generative adversarial neural networks, which greatly reduced the risk of annotation uncertainties and annotation effort. Application of the models to image time series revealed temporal patterns of greenness decay as well as the relative contributions of chlorosis and necrosis. Image-based estimation of greenness decay dynamics was highly correlated with scoring-based estimations (r ≈ 0.9). Contrasting patterns were observed for plots with different levels of foliar diseases, particularly septoria tritici blotch. Our results suggest that tracking the chlorotic and necrotic fractions separately may enable (a) a separate quantification of the contribution of biotic stress and physiological senescence on overall green leaf area dynamics and (b) investigation of interactions between biotic stress and physiological senescence. The high-throughput nature of our methodology paves the way to conducting genetic studies of disease resistance and tolerance.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.