Test-specific funnel plots for healthcare provider profiling leveraging individual- and summary-level information.

Pub Date : 2023-03-01 DOI:10.1007/s10742-022-00285-9
Wenbo Wu, Jonathan P Kuriakose, Wenjing Weng, Richard E Burney, Kevin He
{"title":"Test-specific funnel plots for healthcare provider profiling leveraging individual- and summary-level information.","authors":"Wenbo Wu,&nbsp;Jonathan P Kuriakose,&nbsp;Wenjing Weng,&nbsp;Richard E Burney,&nbsp;Kevin He","doi":"10.1007/s10742-022-00285-9","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to applications in meta-analysis, funnel plots have emerged as an effective graphical tool for visualizing the detection of health care providers with unusual performance. Although there already exist a variety of approaches to producing funnel plots in the literature of provider profiling, limited attention has been paid to elucidating the critical relationship between funnel plots and hypothesis testing. Within the framework of generalized linear models, here we establish methodological guidelines for creating funnel plots specific to the statistical tests of interest. Moreover, we show that the test-specific funnel plots can be created merely leveraging summary statistics instead of individual-level information. This appealing feature inhibits the leak of protected health information and reduces the cost of inter-institutional data transmission. Two data examples, one for surgical patients from Michigan hospitals and the other for Medicare-certified dialysis facilities, demonstrate the applicability to different types of providers and outcomes with either individual- or summary-level information.</p>","PeriodicalId":73215,"journal":{"name":"","volume":"23 ","pages":"45-58"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449097/pdf/nihms-1868840.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10742-022-00285-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In addition to applications in meta-analysis, funnel plots have emerged as an effective graphical tool for visualizing the detection of health care providers with unusual performance. Although there already exist a variety of approaches to producing funnel plots in the literature of provider profiling, limited attention has been paid to elucidating the critical relationship between funnel plots and hypothesis testing. Within the framework of generalized linear models, here we establish methodological guidelines for creating funnel plots specific to the statistical tests of interest. Moreover, we show that the test-specific funnel plots can be created merely leveraging summary statistics instead of individual-level information. This appealing feature inhibits the leak of protected health information and reduces the cost of inter-institutional data transmission. Two data examples, one for surgical patients from Michigan hospitals and the other for Medicare-certified dialysis facilities, demonstrate the applicability to different types of providers and outcomes with either individual- or summary-level information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对医疗保健提供者分析的测试特定漏斗图,利用个人和汇总级别的信息。
除了在元分析中的应用之外,漏斗图已经成为一种有效的图形工具,用于可视化检测具有不寻常表现的医疗保健提供者。虽然在提供者分析的文献中已经存在多种方法来生成漏斗图,但对于阐明漏斗图和假设检验之间的关键关系的关注有限。在广义线性模型的框架内,我们建立了创建漏斗图的方法学指导方针,具体到感兴趣的统计检验。此外,我们表明,特定于测试的漏斗图可以仅仅利用汇总统计而不是个人层面的信息来创建。这一吸引人的特性可防止受保护的健康信息泄露,并降低机构间数据传输的成本。两个数据示例,一个来自密歇根医院的手术患者,另一个来自医疗保险认证的透析设施,证明了不同类型的提供者和结果的适用性,无论是个人还是摘要级别的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1