{"title":"Crosstalk between Long Non-Coding RNA and Spliceosomal microRNA as a Novel Biomarker for Cancer.","authors":"Maram Arafat, Ruth Sperling","doi":"10.3390/ncrna9040042","DOIUrl":null,"url":null,"abstract":"<p><p>Non-coding RNAs (ncRNAs) play diverse roles in regulating cellular processes and have been implicated in pathological conditions, including cancer, where interactions between ncRNAs play a role. Relevant here are (i) microRNAs (miRNAs), mainly known as negative regulators of gene expression in the cytoplasm. However, identification of miRNAs in the nucleus suggested novel nuclear functions, and (ii) long non-coding RNA (lncRNA) regulates gene expression at multiple levels. The recent findings of miRNA in supraspliceosomes of human breast and cervical cancer cells revealed new candidates of lncRNA targets. Here, we highlight potential cases of crosstalk between lncRNA and supraspliceosomal miRNA expressed from the same genomic region, having complementary sequences. Through RNA:RNA base pairing, changes in the level of one partner (either miRNA or lncRNA), as occur in cancer, could affect the level of the other, which might be involved in breast and cervical cancer. An example is spliceosomal mir-7704 as a negative regulator of the oncogenic lncRNA HAGLR. Because the expression of spliceosomal miRNA is cell-type-specific, the list of cis-interacting lncRNA:spliceosomal miRNA presented here is likely just the tip of the iceberg, and such interactions are likely relevant to additional cancers. We thus highlight the potential of lncRNA:spliceosomal miRNA interactions as novel targets for cancer diagnosis and therapies.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459839/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna9040042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Non-coding RNAs (ncRNAs) play diverse roles in regulating cellular processes and have been implicated in pathological conditions, including cancer, where interactions between ncRNAs play a role. Relevant here are (i) microRNAs (miRNAs), mainly known as negative regulators of gene expression in the cytoplasm. However, identification of miRNAs in the nucleus suggested novel nuclear functions, and (ii) long non-coding RNA (lncRNA) regulates gene expression at multiple levels. The recent findings of miRNA in supraspliceosomes of human breast and cervical cancer cells revealed new candidates of lncRNA targets. Here, we highlight potential cases of crosstalk between lncRNA and supraspliceosomal miRNA expressed from the same genomic region, having complementary sequences. Through RNA:RNA base pairing, changes in the level of one partner (either miRNA or lncRNA), as occur in cancer, could affect the level of the other, which might be involved in breast and cervical cancer. An example is spliceosomal mir-7704 as a negative regulator of the oncogenic lncRNA HAGLR. Because the expression of spliceosomal miRNA is cell-type-specific, the list of cis-interacting lncRNA:spliceosomal miRNA presented here is likely just the tip of the iceberg, and such interactions are likely relevant to additional cancers. We thus highlight the potential of lncRNA:spliceosomal miRNA interactions as novel targets for cancer diagnosis and therapies.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.