Caitlin Davies, Jane Tulloch, Ellie Yip, Lydia Currie, Marti Colom-Cadena, Susanne Wegmann, Bradley T Hyman, Lewis Wilkins, Monique Hooley, Makis Tzioras, Tara L Spires-Jones
{"title":"Apolipoprotein E isoform does not influence trans-synaptic spread of tau pathology in a mouse model.","authors":"Caitlin Davies, Jane Tulloch, Ellie Yip, Lydia Currie, Marti Colom-Cadena, Susanne Wegmann, Bradley T Hyman, Lewis Wilkins, Monique Hooley, Makis Tzioras, Tara L Spires-Jones","doi":"10.1177/23982128231191046","DOIUrl":null,"url":null,"abstract":"<p><p>A key hallmark of Alzheimer's disease (AD) is the accumulation of hyperphosphorylated tau in neurofibrillary tangles. This occurs alongside neuroinflammation and neurodegeneration. Pathological tau propagates through the AD brain in a defined manner, which correlates with neuron and synapse loss and cognitive decline. One proposed mechanism of tau spread is through synaptically connected brain structures. Apolipoprotein E4 (<i>APOE4</i>) genotype is the strongest genetic risk factor for late-onset AD and is associated with increased tau burden. Whether the apolipoprotein E (<i>APOE</i>) genotype influences neurodegeneration via tau spread is currently unknown. Here, we demonstrate that virally expressed human tau (with the P301L mutation) injected into mouse entorhinal cortex at 5-6 months or 15-16 months of age spreads trans-synaptically to the hippocampus by 14 weeks post-injection. Injections of tau in mice expressing human <i>APOE2</i>, <i>APOE3</i> or <i>APOE4</i>, as well as <i>APOE</i> knock-outs, showed that tau can spread trans-synaptically in all genotypes and that <i>APOE</i> genotype and age do not affect the spread of tau. These data suggest that <i>APOE</i> genotype is not directly linked to synaptic spread of tau in our model, but other mechanisms involving non-cell autonomous manners of tau spread are still possible.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"7 ","pages":"23982128231191046"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433884/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and neuroscience advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23982128231191046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A key hallmark of Alzheimer's disease (AD) is the accumulation of hyperphosphorylated tau in neurofibrillary tangles. This occurs alongside neuroinflammation and neurodegeneration. Pathological tau propagates through the AD brain in a defined manner, which correlates with neuron and synapse loss and cognitive decline. One proposed mechanism of tau spread is through synaptically connected brain structures. Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset AD and is associated with increased tau burden. Whether the apolipoprotein E (APOE) genotype influences neurodegeneration via tau spread is currently unknown. Here, we demonstrate that virally expressed human tau (with the P301L mutation) injected into mouse entorhinal cortex at 5-6 months or 15-16 months of age spreads trans-synaptically to the hippocampus by 14 weeks post-injection. Injections of tau in mice expressing human APOE2, APOE3 or APOE4, as well as APOE knock-outs, showed that tau can spread trans-synaptically in all genotypes and that APOE genotype and age do not affect the spread of tau. These data suggest that APOE genotype is not directly linked to synaptic spread of tau in our model, but other mechanisms involving non-cell autonomous manners of tau spread are still possible.