{"title":"FOXM1 Promotes Malignant Proliferation of Esophageal Squamous Cell Carcinoma Through Transcriptional Activating CDC6.","authors":"Xiongfeng Chen, Jingbo Chen, Xunbin Yu, Guishan Lin, Ting Chen","doi":"10.1089/dna.2022.0169","DOIUrl":null,"url":null,"abstract":"<p><p>Forkhead box M1 (FOXM1) is a proliferative transcription factor and plays a vital role in many cancers. However, the function and molecular mechanism of FOXM1 in esophageal squamous cell carcinoma (ESCC) remain poorly understood. Hence, we aim to clarify the molecular basis of FOXM1-mediated ESCC progression. In this study, bioinformatics analysis showed that FOXM1 was mainly involved in key signal pathways, including cell proliferation, cell cycle, and homologous recombination in ESCC, and predicted that CDC6 might be a potential regulatory target gene of FOXM1. The results revealed that FOXM1 and CDC6 were significantly overexpressed in ESCC tissue and cell line, and their expression was positively correlated. Further studies showed that FOXM1 directly transcriptionally activated CDC6 by binding to its promoter region in ESCC cells. Moreover, FOXM1 mediated ESCC cell proliferation by regulating CDC6 expression, which may be related to promoting G1-S phase transition of cell cycle. Taken together, FOXM1-CDC6 axis mediates ESCC malignant proliferation and may serve as a potential biological target for ESCC treatment.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"41 7","pages":"671-682"},"PeriodicalIF":2.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293688/pdf/dna.2022.0169.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0169","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Forkhead box M1 (FOXM1) is a proliferative transcription factor and plays a vital role in many cancers. However, the function and molecular mechanism of FOXM1 in esophageal squamous cell carcinoma (ESCC) remain poorly understood. Hence, we aim to clarify the molecular basis of FOXM1-mediated ESCC progression. In this study, bioinformatics analysis showed that FOXM1 was mainly involved in key signal pathways, including cell proliferation, cell cycle, and homologous recombination in ESCC, and predicted that CDC6 might be a potential regulatory target gene of FOXM1. The results revealed that FOXM1 and CDC6 were significantly overexpressed in ESCC tissue and cell line, and their expression was positively correlated. Further studies showed that FOXM1 directly transcriptionally activated CDC6 by binding to its promoter region in ESCC cells. Moreover, FOXM1 mediated ESCC cell proliferation by regulating CDC6 expression, which may be related to promoting G1-S phase transition of cell cycle. Taken together, FOXM1-CDC6 axis mediates ESCC malignant proliferation and may serve as a potential biological target for ESCC treatment.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.