A Class-Imbalance Aware and Explainable Spatio-Temporal Graph Attention Network for Neonatal Seizure Detection.

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Neural Systems Pub Date : 2023-09-01 DOI:10.1142/S0129065723500466
Khadijeh Raeisi, Mohammad Khazaei, Gabriella Tamburro, Pierpaolo Croce, Silvia Comani, Filippo Zappasodi
{"title":"A Class-Imbalance Aware and Explainable Spatio-Temporal Graph Attention Network for Neonatal Seizure Detection.","authors":"Khadijeh Raeisi,&nbsp;Mohammad Khazaei,&nbsp;Gabriella Tamburro,&nbsp;Pierpaolo Croce,&nbsp;Silvia Comani,&nbsp;Filippo Zappasodi","doi":"10.1142/S0129065723500466","DOIUrl":null,"url":null,"abstract":"<p><p>Seizures are the most prevalent clinical indication of neurological disorders in neonates. In this study, a class-imbalance aware and explainable deep learning approach based on Convolutional Neural Networks (CNNs) and Graph Attention Networks (GATs) is proposed for the accurate automated detection of neonatal seizures. The proposed model integrates the temporal information of EEG signals with the spatial information on the EEG channels through the graph representation of the multi-channel EEG segments. One-dimensional CNNs are used to automatically develop a feature set that accurately represents the differences between seizure and nonseizure epochs in the time domain. By employing GAT, the attention mechanism is utilized to emphasize the critical channel pairs and information flow among brain regions. GAT coefficients were then used to empirically visualize the important regions during the seizure and nonseizure epochs, which can provide valuable insight into the location of seizures in the neonatal brain. Additionally, to tackle the severe class imbalance in the neonatal seizure dataset using under-sampling and focal loss techniques are used. Overall, the final Spatio-Temporal Graph Attention Network (ST-GAT) outperformed previous benchmarked methods with a mean AUC of 96.6% and Kappa of 0.88, demonstrating its high accuracy and potential for clinical applications.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500466","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Seizures are the most prevalent clinical indication of neurological disorders in neonates. In this study, a class-imbalance aware and explainable deep learning approach based on Convolutional Neural Networks (CNNs) and Graph Attention Networks (GATs) is proposed for the accurate automated detection of neonatal seizures. The proposed model integrates the temporal information of EEG signals with the spatial information on the EEG channels through the graph representation of the multi-channel EEG segments. One-dimensional CNNs are used to automatically develop a feature set that accurately represents the differences between seizure and nonseizure epochs in the time domain. By employing GAT, the attention mechanism is utilized to emphasize the critical channel pairs and information flow among brain regions. GAT coefficients were then used to empirically visualize the important regions during the seizure and nonseizure epochs, which can provide valuable insight into the location of seizures in the neonatal brain. Additionally, to tackle the severe class imbalance in the neonatal seizure dataset using under-sampling and focal loss techniques are used. Overall, the final Spatio-Temporal Graph Attention Network (ST-GAT) outperformed previous benchmarked methods with a mean AUC of 96.6% and Kappa of 0.88, demonstrating its high accuracy and potential for clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个类别不平衡感知和可解释的时空图注意网络用于新生儿癫痫发作检测。
癫痫是新生儿神经系统疾病最普遍的临床指征。本研究提出了一种基于卷积神经网络(cnn)和图注意网络(GATs)的类别失衡感知和可解释深度学习方法,用于新生儿癫痫发作的准确自动检测。该模型通过多通道脑电信号的图表示,将脑电信号的时间信息与脑电信号通道上的空间信息相结合。一维cnn用于自动开发一个特征集,该特征集准确地表示时域上癫痫发作和非癫痫发作时期的差异。该方法利用注意机制来强调脑区间的关键通道对和信息流。然后使用GAT系数来经验地可视化癫痫发作和非癫痫发作时期的重要区域,这可以为新生儿大脑癫痫发作的位置提供有价值的见解。此外,为了解决严重的类不平衡在新生儿癫痫数据集使用欠采样和局点丢失技术。总体而言,最终的时空图注意网络(ST-GAT)的平均AUC为96.6%,Kappa为0.88,优于以往的基准方法,表明其具有较高的准确性和临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
期刊最新文献
Wavelet Transform, Reconstructed Phase Space, and Deep Learning Neural Networks for EEG-based Schizophrenia Detection Unsupervised EEG-Based Seizure Anomaly Detection with Denoising Diffusion Probabilistic Models Incremental Confidence Sampling with Optimal Transport for Domain Adaptation A model with dopamine depletion in basal ganglia and cerebellum predicts changes in thalamocortical beta oscillations Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1