{"title":"An improved blood hemorrhaging treatment using diatoms frustules, by alternating Ca and light levels in cultures.","authors":"Qinfeng Li, Zheng He, Hussein E Rozan, Chao Feng, Xiaojie Cheng, Xiguang Chen","doi":"10.1007/s42995-023-00180-3","DOIUrl":null,"url":null,"abstract":"<p><p>Hemorrhage control requires hemostatic materials that are both effective and biocompatible. Among these, diatom biosilica (DBs) could significantly improve hemorrhage control, but it induces hemolysis (the hemolysis rate > 5%). Thus, the purpose of this study was to explore the influence of Ca<sup>2+</sup> biomineralization on DBs for developing fast hemostatic materials with a low hemolysis rate. Here, CaCl<sub>2</sub> was added to the diatom medium under high light (cool white, fluorescent lamps, 67.5 µmol m<sup>-2</sup> s<sup>-1</sup>), producing Ca-DBs-3 with a particle size of 40-50 μm and a Ca<sup>2+</sup> content of Ca-DBs-3 obtained from the higher concentration CaCl<sub>2</sub> group (6.7 mmol L<sup>-1</sup>) of 0.16%. The liquid absorption capacity of Ca-DBs-3 was 30.43 ± 0.57 times its dry weight; the in vitro clotting time was comparable to QuikClot<sup>®</sup> zeolite; the hemostatic time and blood loss using the rat tail amputation model were 36.40 ± 2.52 s and 0.39 ± 0.12 g, which were 40.72% and 19.50% of QuikClot<sup>®</sup> zeolite, respectively. Ca-DBs-3 showed no apparent toxicity to L929 cells (cell viability > 80%) and was non-hemolysis (the hemolysis rate < 2%). This study prepared Ca-DBs-3 with a rapid hemostatic effect and good biocompatibility, providing a path to develop diatom biosilica hemostatic materials.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00180-3.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 3","pages":"316-325"},"PeriodicalIF":5.8000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449749/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-023-00180-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hemorrhage control requires hemostatic materials that are both effective and biocompatible. Among these, diatom biosilica (DBs) could significantly improve hemorrhage control, but it induces hemolysis (the hemolysis rate > 5%). Thus, the purpose of this study was to explore the influence of Ca2+ biomineralization on DBs for developing fast hemostatic materials with a low hemolysis rate. Here, CaCl2 was added to the diatom medium under high light (cool white, fluorescent lamps, 67.5 µmol m-2 s-1), producing Ca-DBs-3 with a particle size of 40-50 μm and a Ca2+ content of Ca-DBs-3 obtained from the higher concentration CaCl2 group (6.7 mmol L-1) of 0.16%. The liquid absorption capacity of Ca-DBs-3 was 30.43 ± 0.57 times its dry weight; the in vitro clotting time was comparable to QuikClot® zeolite; the hemostatic time and blood loss using the rat tail amputation model were 36.40 ± 2.52 s and 0.39 ± 0.12 g, which were 40.72% and 19.50% of QuikClot® zeolite, respectively. Ca-DBs-3 showed no apparent toxicity to L929 cells (cell viability > 80%) and was non-hemolysis (the hemolysis rate < 2%). This study prepared Ca-DBs-3 with a rapid hemostatic effect and good biocompatibility, providing a path to develop diatom biosilica hemostatic materials.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00180-3.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.