{"title":"<i>In Silico</i> and <i>In vitro</i> Analysis of Phenolic Acids for Identification of Potential DHFR Inhibitors as Antimicrobial and Anticancer Agents.","authors":"Renu Sehrawat, Priyanka Rathee, Pooja Rathee, Sarita Khatkar, Esra Küpeli Akkol, Anurag Khatkar","doi":"10.2174/1389203724666230825142558","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DHFR is an indispensable enzyme required for the survival of almost all prokaryotic and eukaryotic cells, making it an attractive molecular target for drug design.</p><p><strong>Objective: </strong>In this study, a combined <i>in silico</i> and <i>in vitro</i> approach was utilized to screen out potential anticancer and antimicrobial agents by using DHFR PDB ID 2W9S (for antimicrobial) and 1U72 (for anticancer).</p><p><strong>Methods: </strong>Computational work was performed using Maestro Schrodinger Glide software. The DHFR inhibitory activity of the selected compounds was assessed using the DHFR test kit (CS0340-Sigma- Aldrich).</p><p><strong>Results: </strong>Exhaustive analysis of <i>in silico</i> results revealed that some natural phenolic acids have a good docking score when compared to standards, i.e., trimethoprim and methotrexate, and have astonishing interactions with crucial amino acid residues available in the binding pocket of DHFR, such as Phe 92, Asp 27, Ser 49, Asn 18, and Tyr 98. In particular, digallic acid and chlorogenic acid have amazing interactions with docking scores of -9.9 kcal/mol and -9.6 kcal/mol, respectively, for the targeted protein 2W9S. Docking scores of -10.3 kcal/mol and -10.2 kcal/mol, respectively, for targeted protein 1U72. The best hits were then tested <i>in vitro</i> to evaluate the DHFR inhibitory activity of the compounds. DHFR inhibition activity results are in correlation with molecular docking results.</p><p><strong>Conclusion: </strong><i>In silico</i> and <i>in vitro</i> results confirmed the good binding and inhibitory activity of some phenolic acids to the modeled target proteins. Among all the studied natural phenolic acids, chlorogenic acid, digallic acid, and rosmarinic acid appeared to be the most potential leads for future chemical alteration. This study can provide significant speculative guidance for the design and development of potent DHFR inhibitors in the future by using these compounds as leads.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389203724666230825142558","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: DHFR is an indispensable enzyme required for the survival of almost all prokaryotic and eukaryotic cells, making it an attractive molecular target for drug design.
Objective: In this study, a combined in silico and in vitro approach was utilized to screen out potential anticancer and antimicrobial agents by using DHFR PDB ID 2W9S (for antimicrobial) and 1U72 (for anticancer).
Methods: Computational work was performed using Maestro Schrodinger Glide software. The DHFR inhibitory activity of the selected compounds was assessed using the DHFR test kit (CS0340-Sigma- Aldrich).
Results: Exhaustive analysis of in silico results revealed that some natural phenolic acids have a good docking score when compared to standards, i.e., trimethoprim and methotrexate, and have astonishing interactions with crucial amino acid residues available in the binding pocket of DHFR, such as Phe 92, Asp 27, Ser 49, Asn 18, and Tyr 98. In particular, digallic acid and chlorogenic acid have amazing interactions with docking scores of -9.9 kcal/mol and -9.6 kcal/mol, respectively, for the targeted protein 2W9S. Docking scores of -10.3 kcal/mol and -10.2 kcal/mol, respectively, for targeted protein 1U72. The best hits were then tested in vitro to evaluate the DHFR inhibitory activity of the compounds. DHFR inhibition activity results are in correlation with molecular docking results.
Conclusion: In silico and in vitro results confirmed the good binding and inhibitory activity of some phenolic acids to the modeled target proteins. Among all the studied natural phenolic acids, chlorogenic acid, digallic acid, and rosmarinic acid appeared to be the most potential leads for future chemical alteration. This study can provide significant speculative guidance for the design and development of potent DHFR inhibitors in the future by using these compounds as leads.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.