{"title":"GC–MS and GC–MS/MS measurement of malondialdehyde (MDA) in clinical studies: Pre-analytical and clinical considerations","authors":"Dimitrios Tsikas","doi":"10.1016/j.jmsacl.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Malondialdehyde (MDA; 1,3-propanedial, OHC-CH<sub>2</sub>-CHO) is one of the most frequently measured biomarkers of oxidative stress in plasma and serum. L-Arginine (Arg) is the substrate of nitric oxide synthases (NOS), which convert L-arginine to nitric oxide (NO) and L-citrulline. The Arg/NO pathway comprises several members, including the endogenous NOS-activity inhibitor asymmetric dimethylarginine (ADMA) and its major metabolite dimethyl amine (DMA), and nitrite and nitrate, the major NO metabolites. Reliable measurement of MDA and members of the Arg/NO pathway in plasma, serum, urine and in other biological samples, such as saliva and cerebrospinal fluid, is highly challenging both for analytical and pre-analytical reasons. In our group, we use validated gas chromatography-mass spectrometry (GC–MS) and gas chromatography-tandem mass spectrometry (GC–MS/MS) methods for the quantitative determination in clinical studies of MDA as a biomarker of oxidative stress, and various Arg/NO metabolites that describe the status of this pathway. Here, the importance of pre-analytical issues, which has emerged from the use of GC–MS and GC–MS/MS in clinico-pharmacological studies, is discussed. Paradigmatically, two studies on the long-term oral administration of L-arginine dihydrochloride to patients suffering from peripheral arterial occlusive disease (PAOD) or coronary artery disease (CAD) were considered. Pre-analytical issues that were addressed include blood sampling, plasma or serum storage, study design (notably in long-term studies), and the alternative of measuring MDA in human urine.</p></div>","PeriodicalId":52406,"journal":{"name":"Journal of Mass Spectrometry and Advances in the Clinical Lab","volume":"30 ","pages":"Pages 10-24"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b2/6c/main.PMC10458701.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry and Advances in the Clinical Lab","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667145X23000305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Malondialdehyde (MDA; 1,3-propanedial, OHC-CH2-CHO) is one of the most frequently measured biomarkers of oxidative stress in plasma and serum. L-Arginine (Arg) is the substrate of nitric oxide synthases (NOS), which convert L-arginine to nitric oxide (NO) and L-citrulline. The Arg/NO pathway comprises several members, including the endogenous NOS-activity inhibitor asymmetric dimethylarginine (ADMA) and its major metabolite dimethyl amine (DMA), and nitrite and nitrate, the major NO metabolites. Reliable measurement of MDA and members of the Arg/NO pathway in plasma, serum, urine and in other biological samples, such as saliva and cerebrospinal fluid, is highly challenging both for analytical and pre-analytical reasons. In our group, we use validated gas chromatography-mass spectrometry (GC–MS) and gas chromatography-tandem mass spectrometry (GC–MS/MS) methods for the quantitative determination in clinical studies of MDA as a biomarker of oxidative stress, and various Arg/NO metabolites that describe the status of this pathway. Here, the importance of pre-analytical issues, which has emerged from the use of GC–MS and GC–MS/MS in clinico-pharmacological studies, is discussed. Paradigmatically, two studies on the long-term oral administration of L-arginine dihydrochloride to patients suffering from peripheral arterial occlusive disease (PAOD) or coronary artery disease (CAD) were considered. Pre-analytical issues that were addressed include blood sampling, plasma or serum storage, study design (notably in long-term studies), and the alternative of measuring MDA in human urine.