The prospects of microphysiological systems in modeling platelet pathophysiology in cancer.

IF 2.5 3区 医学 Q3 CELL BIOLOGY Platelets Pub Date : 2023-12-01 DOI:10.1080/09537104.2023.2247489
Lopamudra D Ghosh, Abhishek Jain
{"title":"The prospects of microphysiological systems in modeling platelet pathophysiology in cancer.","authors":"Lopamudra D Ghosh, Abhishek Jain","doi":"10.1080/09537104.2023.2247489","DOIUrl":null,"url":null,"abstract":"<p><p>The contribution of platelets is well recognized in thrombosis and hemostasis. However, platelets also promote tumor progression and metastasis through their crosstalk with various cells of the tumor microenvironment (TME). For example, several cancer models continue to show that platelet functions are readily altered by cancer cells upon activation leading to the formation of platelet-tumor aggregates, triggering release of soluble factors from platelet granules and altering platelet turnover. Further, activated platelets protect tumor cells from shear forces in circulation and assault of cytotoxic natural killer (NK) cells. Platelet-secreted factors promote proliferation of malignant cells, metastasis, and chemoresistance. Much of our knowledge of platelet biology in cancer has been achieved with animal models, particularly murine. However, this preclinical understanding of the complex pathophysiology is yet to be fully realized and translated to clinical trials in terms of new approaches to treat cancer via controlling the platelet function. In this review, we summarize the current state of knowledge of platelet physiology obtained through existing <i>in vivo</i> and <i>in vitro</i> cancer models, the complex interactions of platelets with cancer cells in TME and the pathways by which platelets may confer chemoresistance. Since the FDA Modernization Act recently passed by the US government has made animal models optional in drug approvals, we critically examine the existing and futuristic value of employing bioengineered microphysiological systems and organ-chips to understand the mechanistic role of platelets in cancer metastasis and exploring novel therapeutic targets for cancer prevention and treatment.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":"34 1","pages":"2247489"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2023.2247489","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The contribution of platelets is well recognized in thrombosis and hemostasis. However, platelets also promote tumor progression and metastasis through their crosstalk with various cells of the tumor microenvironment (TME). For example, several cancer models continue to show that platelet functions are readily altered by cancer cells upon activation leading to the formation of platelet-tumor aggregates, triggering release of soluble factors from platelet granules and altering platelet turnover. Further, activated platelets protect tumor cells from shear forces in circulation and assault of cytotoxic natural killer (NK) cells. Platelet-secreted factors promote proliferation of malignant cells, metastasis, and chemoresistance. Much of our knowledge of platelet biology in cancer has been achieved with animal models, particularly murine. However, this preclinical understanding of the complex pathophysiology is yet to be fully realized and translated to clinical trials in terms of new approaches to treat cancer via controlling the platelet function. In this review, we summarize the current state of knowledge of platelet physiology obtained through existing in vivo and in vitro cancer models, the complex interactions of platelets with cancer cells in TME and the pathways by which platelets may confer chemoresistance. Since the FDA Modernization Act recently passed by the US government has made animal models optional in drug approvals, we critically examine the existing and futuristic value of employing bioengineered microphysiological systems and organ-chips to understand the mechanistic role of platelets in cancer metastasis and exploring novel therapeutic targets for cancer prevention and treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生理系统在模拟肿瘤血小板病理生理中的应用前景。
血小板在血栓形成和止血方面的作用是公认的。然而,血小板也通过与肿瘤微环境(TME)的各种细胞的相互作用来促进肿瘤的进展和转移。例如,几个癌症模型继续表明,癌症细胞在活化后容易改变血小板功能,从而形成血小板-肿瘤聚集体,触发血小板颗粒中可溶性因子的释放并改变血小板周转。此外,活化的血小板保护肿瘤细胞免受循环中的剪切力和细胞毒性自然杀伤(NK)细胞的攻击。血小板分泌因子促进恶性细胞增殖、转移和化疗耐药性。我们对癌症血小板生物学的大部分知识都是通过动物模型获得的,尤其是小鼠。然而,就通过控制血小板功能治疗癌症的新方法而言,这种对复杂病理生理学的临床前理解尚待充分实现并转化为临床试验。在这篇综述中,我们总结了通过现有的体内和体外癌症模型获得的血小板生理学知识的现状,血小板与TME中癌症细胞的复杂相互作用,以及血小板可能产生化学耐药性的途径。由于美国政府最近通过的《美国食品药品监督管理局现代化法案》已将动物模型作为药物审批的可选内容,我们仔细研究了利用生物工程微物理系统和器官芯片来了解血小板在癌症转移中的机制作用以及探索癌症预防和治疗的新治疗靶点的现有和未来价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Platelets
Platelets 医学-细胞生物学
CiteScore
6.70
自引率
3.00%
发文量
79
审稿时长
1 months
期刊介绍: Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research. Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods. Research areas include: Platelet function Biochemistry Signal transduction Pharmacology and therapeutics Interaction with other cells in the blood vessel wall The contribution of platelets and platelet-derived products to health and disease The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor. Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.
期刊最新文献
Transcriptomic and functional characterization of megakaryocytic-derived platelet-like particles: impaired aggregation and prominent anti-tumor effects. Cardiometabolic risk factor burden associates with an immature platelet profile. Extracellular thiol isomerase ERp5 regulates integrin αIIbβ3 activation by inhibition of fibrinogen binding. Effect of aspirin dosage on oxidative stress and platelet reactivity in patients undergoing coronary artery bypass grafting (APRICOT): randomized controlled trial. Branched endovascular aortic aneurysm repair decreases platelet reactivity and platelet-rich thrombus formation - a prospective, cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1