Fibration symmetries and cluster synchronization in the Caenorhabditis elegans connectome.

ArXiv Pub Date : 2024-05-03
Bryant Avila, Pedro Augusto, Manuel Zimmer, Matteo Serafino, Hernán A Makse
{"title":"Fibration symmetries and cluster synchronization in the <i>Caenorhabditis elegans</i> connectome.","authors":"Bryant Avila, Pedro Augusto, Manuel Zimmer, Matteo Serafino, Hernán A Makse","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Capturing how the <i>Caenorhabditis elegans</i> connectome structure gives rise to its neuron functionality remains unclear. It is through fiber symmetries found in its neuronal connectivity that synchronization of a group of neurons can be determined. To understand these we investigate graph symmetries and search for such in the symmetrized versions of the forward and backward locomotive sub-networks of the <i>Caenorhabditi elegans</i> worm neuron network. The use of ordinarily differential equations simulations admissible to these graphs are used to validate the predictions of these fiber symmetries and are compared to the more restrictive orbit symmetries. Additionally fibration symmetries are used to decompose these graphs into their fundamental building blocks which reveal units formed by nested loops or multilayered fibers. It is found that fiber symmetries of the connectome can accurately predict neuronal synchronization even under not idealized connectivity as long as the dynamics are within stable regimes of simulations.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Capturing how the Caenorhabditis elegans connectome structure gives rise to its neuron functionality remains unclear. It is through fiber symmetries found in its neuronal connectivity that synchronization of a group of neurons can be determined. To understand these we investigate graph symmetries and search for such in the symmetrized versions of the forward and backward locomotive sub-networks of the Caenorhabditi elegans worm neuron network. The use of ordinarily differential equations simulations admissible to these graphs are used to validate the predictions of these fiber symmetries and are compared to the more restrictive orbit symmetries. Additionally fibration symmetries are used to decompose these graphs into their fundamental building blocks which reveal units formed by nested loops or multilayered fibers. It is found that fiber symmetries of the connectome can accurately predict neuronal synchronization even under not idealized connectivity as long as the dynamics are within stable regimes of simulations.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
秀丽隐杆线虫连接体中的纤维对称性和簇同步性。
目前尚不清楚秀丽隐杆线虫连接体结构是如何产生其神经元功能的。正是通过在神经元连接中发现的纤维对称性,才能确定一组神经元的同步性。为了理解这些,我们研究了图的对称性,并在秀丽隐杆线虫蠕虫神经元网络的前向和后向机车子网络的对称化版本中寻找这种对称性。使用可用于这些图的常微分方程模拟来验证这些纤维对称性的预测,并与更严格的轨道对称性进行比较。此外,纤维对称性被用来将这些图分解为它们的基本构建块,这些构建块揭示了由嵌套环或多层纤维形成的单元。研究发现,即使在非理想连接的情况下,只要动力学处于稳定的模拟范围内,连接体的纤维对称性也可以准确预测神经元同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1