Function analysis of CYP321A9 from Spodoptera frugiperda (Lepidoptera: Noctuidae) associated with emamectin benzoate, and a novel insecticide, cyproflanilide detoxification.

IF 2.2 2区 农林科学 Q1 ENTOMOLOGY Journal of Economic Entomology Pub Date : 2023-10-10 DOI:10.1093/jee/toad168
Yang Shi, Li He, Wenbing Ding, Hong Huang, Hualiang He, Jin Xue, Qiao Gao, Zhixiang Zhang, Youzhi Li, Lin Qiu
{"title":"Function analysis of CYP321A9 from Spodoptera frugiperda (Lepidoptera: Noctuidae) associated with emamectin benzoate, and a novel insecticide, cyproflanilide detoxification.","authors":"Yang Shi,&nbsp;Li He,&nbsp;Wenbing Ding,&nbsp;Hong Huang,&nbsp;Hualiang He,&nbsp;Jin Xue,&nbsp;Qiao Gao,&nbsp;Zhixiang Zhang,&nbsp;Youzhi Li,&nbsp;Lin Qiu","doi":"10.1093/jee/toad168","DOIUrl":null,"url":null,"abstract":"<p><p>The fall armyworm, Spodoptera frugiperda, is an invasive agricultural pest that is a serious threat to agricultural production and global food security. Chemical control is the most effective method for preventing outbreaks of S. frugiperda. However, insecticide resistance often develops as a result of prolonged pesticide use, and the molecular mechanisms involved in insecticide resistance remain unclear. Insect cytochrome P450 monooxygenases play an important role in the detoxification of insecticides and insecticide resistance in Lepidoptera. In our study, the LC50 of a novel insecticide (cyproflanilide) and a conventional insecticide (emamectin benzoate) for S. frugiperda second-instar larvae were 7.04 and 1.61 mg/L, respectively. Furthermore, CYP321A9 expression was upregulated in larvae exposed to these insecticides. Additionally, knockdown of CYP321A9 by feeding larvae with dsRNA for 72 h significantly increased the mortality of S. frugiperda exposed to emamectin benzoate and cyproflanilide by 23.33% and 7.78%, respectively. Our results indicate that CYP321A9 may play an important role in the detoxification of emamectin benzoate and cyproflanilide in S. frugiperda. Our findings provide a basis to better understand the mechanisms of insecticide resistance and contribute to the control of S. frugiperda.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1812-1819"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jee/toad168","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The fall armyworm, Spodoptera frugiperda, is an invasive agricultural pest that is a serious threat to agricultural production and global food security. Chemical control is the most effective method for preventing outbreaks of S. frugiperda. However, insecticide resistance often develops as a result of prolonged pesticide use, and the molecular mechanisms involved in insecticide resistance remain unclear. Insect cytochrome P450 monooxygenases play an important role in the detoxification of insecticides and insecticide resistance in Lepidoptera. In our study, the LC50 of a novel insecticide (cyproflanilide) and a conventional insecticide (emamectin benzoate) for S. frugiperda second-instar larvae were 7.04 and 1.61 mg/L, respectively. Furthermore, CYP321A9 expression was upregulated in larvae exposed to these insecticides. Additionally, knockdown of CYP321A9 by feeding larvae with dsRNA for 72 h significantly increased the mortality of S. frugiperda exposed to emamectin benzoate and cyproflanilide by 23.33% and 7.78%, respectively. Our results indicate that CYP321A9 may play an important role in the detoxification of emamectin benzoate and cyproflanilide in S. frugiperda. Our findings provide a basis to better understand the mechanisms of insecticide resistance and contribute to the control of S. frugiperda.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
草地贪夜蛾(鳞翅目:夜蛾科)CYP321A9与苯甲酸阿维菌素和一种新的杀虫剂Cypoflanilide解毒作用的功能分析。
秋粘虫草地贪夜蛾是一种入侵性农业害虫,对农业生产和全球粮食安全构成严重威胁。化学防治是预防草地贪腐病暴发的最有效方法。然而,杀虫剂耐药性往往是由于长期使用杀虫剂而产生的,而杀虫剂耐药性的分子机制尚不清楚。昆虫细胞色素P450单加氧酶在鳞翅目昆虫的杀虫剂解毒和抗药性中起着重要作用。在我们的研究中,一种新的杀虫剂(Cypoflanilide)和一种常规杀虫剂(苯甲酸阿维菌素)对草地贪夜蛾二龄幼虫的LC50分别为7.04和1.61mg/L。此外,CYP321A9在暴露于这些杀虫剂的幼虫中的表达上调。此外,通过用dsRNA喂养幼虫72小时来敲除CYP321A9,使暴露于苯甲酸埃维菌素和Cypoflanilide的草地贪夜蛾的死亡率分别显著增加23.33%和7.78%。我们的研究结果表明,CYP321A9可能在埃维菌素苯甲酸酯和Cypoflanilide对草地贪夜蛾的解毒中发挥重要作用。我们的研究结果为更好地了解抗药性机制提供了基础,并有助于控制草地贪夜蛾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
9.10%
发文量
198
审稿时长
3-6 weeks
期刊介绍: Journal of Economic Entomology the most-cited entomological journal – publishes articles on the economic significance of insects and other arthropods and includes sections on apiculture & social insects, insecticides, biological control, household & structural insects, crop protection, forest entomology, and more. In addition to research papers, Journal of Economic Entomology publishes Reviews, interpretive articles in a Forum section, Short Communications, and Letters to the Editor. The journal is published bimonthly in February, April, June, August, October, and December.
期刊最新文献
Reviewers for Journal of Economic Entomology (November 2022–October 2023) 2-Methoxybenzaldehyde effectively repels ants Phenolic secondary metabolites from Acorus calamus (Acorales: Acoraceae) rhizomes: the feeding deterrents for Spodoptera litura (Lepidoptera: Noctuidae). Sampling Lasioderma serricorne (Coleoptera: Anobiidae) in 2 coffee bean warehouses in New Jersey. Biology and management of hemp russet mite (Acari: Eriophyidae).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1