Computational Mechanical Analysis of AO 44A1, 44B1, and 44C1 Fractures with Finite Element Modeling: Evaluation of Screw, Plate, and Kirschner Wire Fixation.
Hacı Ali Olçar, Alaettin Özer, Halil Burak Mutu, Göker Yurdakul, Tolgahan Kuru, Davut Aydın, Murat Korkmaz
{"title":"Computational Mechanical Analysis of AO 44A1, 44B1, and 44C1 Fractures with Finite Element Modeling: Evaluation of Screw, Plate, and Kirschner Wire Fixation.","authors":"Hacı Ali Olçar, Alaettin Özer, Halil Burak Mutu, Göker Yurdakul, Tolgahan Kuru, Davut Aydın, Murat Korkmaz","doi":"10.7547/22-155","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The aim of this study was to create AO 44A1, 44B1, and 44C1 fractures using finite element analysis to determine the stability of Kirschner wire, intramedullary screw, and plate-screw fixation methods in fracture.</p><p><strong>Methods: </strong>Using finite element analysis, the postreduction behavior of AO 44A1, 44B1, and 44C1 fractures with Kirschner wire, intramedullary screw, and plate-screw fixation methods was analyzed and compared in terms of displacement and stress.</p><p><strong>Results: </strong>The lowest amount of displacement was provided with the intramedullary screw method in AO 44A1 and 44B1 fractures and with the 4-mm Kirschner wire method in AO 44C1 fractures. The total displacement of the intramedullary screw system used for fixation in AO 44A1, 44B1, and 44C1 fractures was lower.</p><p><strong>Conclusions: </strong>According to finite element analysis results, the lowest amount of displacement was obtained with intramedullary screw fixation in AO 44A1 and 44B1 fractures, and 4-mm Kirschner wire fixation was achieved in AO 44C1 fractures.</p>","PeriodicalId":17241,"journal":{"name":"Journal of the American Podiatric Medical Association","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Podiatric Medical Association","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7547/22-155","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The aim of this study was to create AO 44A1, 44B1, and 44C1 fractures using finite element analysis to determine the stability of Kirschner wire, intramedullary screw, and plate-screw fixation methods in fracture.
Methods: Using finite element analysis, the postreduction behavior of AO 44A1, 44B1, and 44C1 fractures with Kirschner wire, intramedullary screw, and plate-screw fixation methods was analyzed and compared in terms of displacement and stress.
Results: The lowest amount of displacement was provided with the intramedullary screw method in AO 44A1 and 44B1 fractures and with the 4-mm Kirschner wire method in AO 44C1 fractures. The total displacement of the intramedullary screw system used for fixation in AO 44A1, 44B1, and 44C1 fractures was lower.
Conclusions: According to finite element analysis results, the lowest amount of displacement was obtained with intramedullary screw fixation in AO 44A1 and 44B1 fractures, and 4-mm Kirschner wire fixation was achieved in AO 44C1 fractures.
期刊介绍:
The Journal of the American Podiatric Medical Association, the official journal of the Association, is the oldest and most frequently cited peer-reviewed journal in the profession of foot and ankle medicine. Founded in 1907 and appearing 6 times per year, it publishes research studies, case reports, literature reviews, special communications, clinical correspondence, letters to the editor, book reviews, and various other types of submissions. The Journal is included in major indexing and abstracting services for biomedical literature.