Fast principal component analysis for cryo-electron microscopy images.

Biological imaging Pub Date : 2023-01-01 Epub Date: 2023-02-03 DOI:10.1017/s2633903x23000028
Nicholas F Marshall, Oscar Mickelin, Yunpeng Shi, Amit Singer
{"title":"Fast principal component analysis for cryo-electron microscopy images.","authors":"Nicholas F Marshall, Oscar Mickelin, Yunpeng Shi, Amit Singer","doi":"10.1017/s2633903x23000028","DOIUrl":null,"url":null,"abstract":"<p><p>Principal component analysis (PCA) plays an important role in the analysis of cryo-electron microscopy (cryo-EM) images for various tasks such as classification, denoising, compression, and ab initio modeling. We introduce a fast method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-EM projection images affected by radial point spread functions that enables fast PCA computation. Our method is based on a new algorithm for expanding images in the Fourier-Bessel basis (the harmonics on the disk), which provides a convenient way to handle the effect of the contrast transfer functions. For <i>N</i> images of size <i>L</i> × <i>L</i>, our method has time complexity <i>O</i>(<i>NL</i><sup>3</sup> + <i>L</i><sup>4</sup>) and space complexity <i>O</i>(<i>NL</i><sup>2</sup> + <i>L</i><sup>3</sup>). In contrast to previous work, these complexities are independent of the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and experimental data and show acceleration by factors of up to two orders of magnitude.</p>","PeriodicalId":72371,"journal":{"name":"Biological imaging","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s2633903x23000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Principal component analysis (PCA) plays an important role in the analysis of cryo-electron microscopy (cryo-EM) images for various tasks such as classification, denoising, compression, and ab initio modeling. We introduce a fast method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-EM projection images affected by radial point spread functions that enables fast PCA computation. Our method is based on a new algorithm for expanding images in the Fourier-Bessel basis (the harmonics on the disk), which provides a convenient way to handle the effect of the contrast transfer functions. For N images of size L × L, our method has time complexity O(NL3 + L4) and space complexity O(NL2 + L3). In contrast to previous work, these complexities are independent of the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and experimental data and show acceleration by factors of up to two orders of magnitude.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温电子显微镜图像的快速主成分分析。
主成分分析(PCA)在冷冻电子显微镜(cryo-EM)图像分析中发挥着重要作用,可用于分类、去噪、压缩和 ab initio 建模等各种任务。我们介绍了一种快速方法,用于估计受径向点扩散函数影响的噪声冷冻电镜投影图像的二维协方差矩阵的压缩表示,从而实现快速 PCA 计算。我们的方法基于一种在傅立叶-贝塞尔基(圆盘上的谐波)上扩展图像的新算法,它为处理对比度传递函数的影响提供了一种便捷的方法。对于大小为 L × L 的 N 幅图像,我们的方法的时间复杂度为 O(NL3 + L4),空间复杂度为 O(NL2 + L3)。与之前的研究相比,这些复杂度与图像不同对比度传递函数的数量无关。我们在合成数据和实验数据上演示了我们的方法,结果表明加速度可达两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep-learning-based image compression for microscopy images: An empirical study. The quest for early detection of retinal disease: 3D CycleGAN-based translation of optical coherence tomography into confocal microscopy. Bridging the gap: Integrating cutting-edge techniques into biological imaging with deepImageJ. Deep-blur: Blind identification and deblurring with convolutional neural networks. Exploring self-supervised learning biases for microscopy image representation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1