{"title":"Transgenic murine models for the study of drug hypersensitivity reactions linked to HLA-I molecules.","authors":"Montserrat Puig, Michael A Norcross","doi":"10.1097/ACI.0000000000000913","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Immune-mediated drug hypersensitivity reactions (DHRs) can be life-threatening and an impediment to drug development. Mechanism of disease studies are difficult to perform in humans. Here we review human leukocyte antigens class I (HLA-I) transgenic murine models and highlight how these systems have helped to elucidate drug-specific and host immune factors that initiate, propagate and control severe drug toxicities to skin and liver.</p><p><strong>Recent findings: </strong>HLA transgenic mice have been developed and used to study immune-mediated drug reactions in vitro and in vivo . CD8+ T cells from HLA-B∗57:01-expressing mice respond strongly to abacavir (ABC) in vitro but have self-limited responses to drug exposure in vivo . Immune tolerance can be overcome by depleting regulatory T cells (Treg) allowing antigen-presenting dendritic cells to express CD80/86 costimulatory molecules and signal through CD28 on the CD8+ T cell. Depletion of Treg also removes competition for interleukin 2 (IL-2) to allow T cell expansion and differentiation. Fine tuning of responses depends on inhibitory checkpoint molecules such as PD-1. Improved mouse models express only HLA in the absence of PD-1. These models show enhanced liver injury to flucloxacillin (FLX) which depends on drug priming, CD4+ T cell depletion, and lack of PD-1 expression. Drug-specific HLA-restricted cytotoxic CD8+ T cells can infiltrate the liver but are suppressed by Kupffer and liver sinusoidal endothelial cells.</p><p><strong>Summary: </strong>HLA-I transgenic mouse models are now available to study ABC, FLX and carbamazepine-induced adverse reactions. In vivo studies range from characterizing drug-antigen presentation, T cell activation, immune-regulatory molecules and cell-cell interaction pathways that are specifically involved in causing or controlling unwanted DHRs.</p>","PeriodicalId":10956,"journal":{"name":"Current Opinion in Allergy and Clinical Immunology","volume":"23 4","pages":"279-286"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Allergy and Clinical Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ACI.0000000000000913","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Immune-mediated drug hypersensitivity reactions (DHRs) can be life-threatening and an impediment to drug development. Mechanism of disease studies are difficult to perform in humans. Here we review human leukocyte antigens class I (HLA-I) transgenic murine models and highlight how these systems have helped to elucidate drug-specific and host immune factors that initiate, propagate and control severe drug toxicities to skin and liver.
Recent findings: HLA transgenic mice have been developed and used to study immune-mediated drug reactions in vitro and in vivo . CD8+ T cells from HLA-B∗57:01-expressing mice respond strongly to abacavir (ABC) in vitro but have self-limited responses to drug exposure in vivo . Immune tolerance can be overcome by depleting regulatory T cells (Treg) allowing antigen-presenting dendritic cells to express CD80/86 costimulatory molecules and signal through CD28 on the CD8+ T cell. Depletion of Treg also removes competition for interleukin 2 (IL-2) to allow T cell expansion and differentiation. Fine tuning of responses depends on inhibitory checkpoint molecules such as PD-1. Improved mouse models express only HLA in the absence of PD-1. These models show enhanced liver injury to flucloxacillin (FLX) which depends on drug priming, CD4+ T cell depletion, and lack of PD-1 expression. Drug-specific HLA-restricted cytotoxic CD8+ T cells can infiltrate the liver but are suppressed by Kupffer and liver sinusoidal endothelial cells.
Summary: HLA-I transgenic mouse models are now available to study ABC, FLX and carbamazepine-induced adverse reactions. In vivo studies range from characterizing drug-antigen presentation, T cell activation, immune-regulatory molecules and cell-cell interaction pathways that are specifically involved in causing or controlling unwanted DHRs.
期刊介绍:
This reader-friendly, bimonthly resource provides a powerful, broad-based perspective on the most important advances from throughout the world literature. Featuring renowned guest editors and focusing exclusively on one to three topics, every issue of Current Opinion in Allergy and Clinical Immunology delivers unvarnished, expert assessments of developments from the previous year. Insightful editorials and on-the-mark invited reviews cover key subjects such as upper airway disease; mechanisms of allergy and adult asthma; paediatric asthma and development of atopy; food and drug allergies; and immunotherapy.