Inference after latent variable estimation for single-cell RNA sequencing data.

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2023-12-15 DOI:10.1093/biostatistics/kxac047
Anna Neufeld, Lucy L Gao, Joshua Popp, Alexis Battle, Daniela Witten
{"title":"Inference after latent variable estimation for single-cell RNA sequencing data.","authors":"Anna Neufeld, Lucy L Gao, Joshua Popp, Alexis Battle, Daniela Witten","doi":"10.1093/biostatistics/kxac047","DOIUrl":null,"url":null,"abstract":"<p><p>In the analysis of single-cell RNA sequencing data, researchers often characterize the variation between cells by estimating a latent variable, such as cell type or pseudotime, representing some aspect of the cell's state. They then test each gene for association with the estimated latent variable. If the same data are used for both of these steps, then standard methods for computing p-values in the second step will fail to achieve statistical guarantees such as Type 1 error control. Furthermore, approaches such as sample splitting that can be applied to solve similar problems in other settings are not applicable in this context. In this article, we introduce count splitting, a flexible framework that allows us to carry out valid inference in this setting, for virtually any latent variable estimation technique and inference approach, under a Poisson assumption. We demonstrate the Type 1 error control and power of count splitting in a simulation study and apply count splitting to a data set of pluripotent stem cells differentiating to cardiomyocytes.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"270-287"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac047","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the analysis of single-cell RNA sequencing data, researchers often characterize the variation between cells by estimating a latent variable, such as cell type or pseudotime, representing some aspect of the cell's state. They then test each gene for association with the estimated latent variable. If the same data are used for both of these steps, then standard methods for computing p-values in the second step will fail to achieve statistical guarantees such as Type 1 error control. Furthermore, approaches such as sample splitting that can be applied to solve similar problems in other settings are not applicable in this context. In this article, we introduce count splitting, a flexible framework that allows us to carry out valid inference in this setting, for virtually any latent variable estimation technique and inference approach, under a Poisson assumption. We demonstrate the Type 1 error control and power of count splitting in a simulation study and apply count splitting to a data set of pluripotent stem cells differentiating to cardiomyocytes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞 RNA 测序数据的潜变量估计后推断。
在分析单细胞 RNA 测序数据时,研究人员通常会通过估计一个代表细胞状态某些方面的潜变量(如细胞类型或伪时间)来描述细胞之间的变化。然后,他们测试每个基因是否与估计的潜变量相关。如果在这两个步骤中使用相同的数据,那么在第二步中计算 p 值的标准方法将无法实现统计保证,如类型 1 错误控制。此外,在其他情况下可用于解决类似问题的方法,如样本拆分,在此情况下也不适用。在本文中,我们介绍了计数分割,这是一个灵活的框架,允许我们在泊松假设下,针对几乎所有的潜变量估计技术和推断方法,在这种情况下进行有效的推断。我们在模拟研究中演示了计数分割的第一类错误控制和威力,并将计数分割应用于多能干细胞分化为心肌细胞的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction. Simultaneous clustering and estimation of networks in multiple graphical models. A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data. A modeling framework for detecting and leveraging node-level information in Bayesian network inference. A marginal structural model for normal tissue complication probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1